
1

CSE 454
Security III
“Outbreak!”

Internet Outbreaks: Internet Outbreaks:
Epidemiology and DefensesEpidemiology and Defenses

Stefan SavageStefan Savage

Cooperative Center for Internet Epidemiology and DefensesCooperative Center for Internet Epidemiology and Defenses
Department of Computer Science & EngineeringDepartment of Computer Science & Engineering

University of California at San DiegoUniversity of California at San Diego

In collaboration with Cristian Estan, Justin Ma, David Moore, VeIn collaboration with Cristian Estan, Justin Ma, David Moore, Vern Paxson (ICSI), Colleen rn Paxson (ICSI), Colleen
Shannon, Sumeet Singh, Alex Snoeren, Stuart Staniford (Nevis), AShannon, Sumeet Singh, Alex Snoeren, Stuart Staniford (Nevis), Amin Vahdat, George min Vahdat, George

Varghese, Geoff Voelker, Michael Vrable, Nick Weaver (ICSI)Varghese, Geoff Voelker, Michael Vrable, Nick Weaver (ICSI)

Collaborative Center for Internet
Epidemiology and Defenses (CCIED)

Joint project (UCSD/ICSI)
Other PIs: Vern Paxson,
Nick Weaver, Geoff Voelker,
George Varghese
~15 staff and students in addition
Funded by NSF with additional support from Microsoft,
Intel, HP, and UCSD’s CNS

Three key areas of interest
Infrastructure and analysis for understanding large-scale
Internet threads
Automated defensive technologies
Forensic and legal requirements

Slides © Stefan Savage, UCSD

How Chicken Little sees the Internet…

Slides © Stefan Savage, UCSD

Why Chicken Little is a naïve optimist

Imagine the following species:
Poor genetic diversity; heavily inbred
Lives in “hot zone”; thriving ecosystem of infectious
pathogens
Instantaneous transmission of disease
Immune response 10-1M times slower
Poor hygiene practices

What would its long-term prognosis be?
What if diseases were designed…

Trivial to create a new disease
Highly profitable to do so

Slides © Stefan Savage, UCSD

Threat transformation

Traditional threats
Attacker manually targets high-
value system/resource
Defender increases cost to
compromise high-value systems
Biggest threat: insider attacker

Modern threats
Attacker uses automation to
target all systems at once
(can filter later)
Defender must defend all
systems at once
Biggest threats: software
vulnerabilities & naïve users

Slides © Stefan Savage, UCSD

2

Large-scale technical enablers

Unrestricted connectivity
Large-scale adoption of IP model for networks & apps

Software homogeneity & user naiveté
Single bug = mass vulnerability in millions of hosts
Trusting users (“ok”) = mass vulnerability in millions of
hosts

Few meaningful defenses
Effective anonymity (minimal risk)

Slides © Stefan Savage, UCSD

No longer just for fun, but for profit
SPAM forwarding (MyDoom.A backdoor, SoBig),
Credit Card theft (Korgo), DDoS extortion, etc…
Symbiotic relationship: worms, bots, SPAM, etc
Fluid third-party exchange market
(millions of hosts for sale)

Going rate for SPAM proxying 3 -10 cents/host/week
Seems small, but 25k botnet gets you $40k-130k/yr

Generalized search capabilities are next

“Virtuous” economic cycle
The bad guys have large incentive to get better

Driving Economic Forces

Slides © Stefan Savage, UCSD

Today’s focus: Outbreaks
Outbreaks?

Acute epidemics of infectious malcode designed to
actively spread from host to host over the network
E.g. Worms, viruses (ignore pedantic distinctions)

Why epidemics?
Epidemic spreading is the fastest method for large-
scale network compromise

Why fast?
Slow infections allow much more time for detection,
analysis, etc (traditional methods may cope)

Slides © Stefan Savage, UCSD

A pretty fast outbreak:
Slammer (2003)

First ~1min behaves like classic
random scanning worm

Doubling time of ~8.5 seconds
CodeRed doubled every 40mins

>1min worm starts to saturate
access bandwidth

Some hosts issue >20,000 scans
per second
Self-interfering
(no congestion control)

Peaks at ~3min
>55million IP scans/sec

90% of Internet scanned in <10mins
Infected ~100k hosts
(conservative) See: Moore et al, IEEE Security & Privacy,

1(4), 2003 for more detailsSlides © Stefan Savage, UCSD

Was Slammer really fast?
Yes, it was orders of magnitude faster than CR
No, it was poorly written and unsophisticated
Who cares? It is literally an academic point

The current debate is whether one can get < 500ms
Bottom line: way faster than people!

Slides © Stefan Savage, UCSD

How to think about worms

Reasonably well described as infectious epidemics
Simplest model: Homogeneous random contacts

Classic SI model
N: population size
S(t): susceptible hosts at time t
I(t): infected hosts at time t
ß: contact rate
i(t): I(t)/N, s(t): S(t)/N

N
IS

dt
dS

N
IS

dt
dI

β

β

−=

=
)1(ii

dt
di

−= β

)(

)(

1
)(Tt

Tt

e
eti −

−

+
= β

β

courtesy Paxson,
Staniford, Weaver

Slides © Stefan Savage, UCSD

3

What’s important?

There are lots of improvements to the model…
Chen et al, Modeling the Spread of Active Worms, Infocom 2003 (discrete time)
Wang et al, Modeling Timing Parameters for Virus Propagation on the Internet ,
ACM WORM ’04 (delay)
Ganesh et al, The Effect of Network Topology on the Spread of Epidemics,
Infocom 2005 (topology)

… but the bottom line is the same. We care about two
things:

How likely is it that a given infection attempt is
successful?

Target selection (random, biased, hitlist, topological,…)
Vulnerability distribution (e.g. density – S(0)/N)

How frequently are infections attempted?
ß: Contact rate

Slides © Stefan Savage, UCSD

What can be done?

Reduce the number of susceptible hosts
Prevention, reduce S(t) while I(t) is still small
(ideally reduce S(0))

Reduce the contact rate
Containment, reduce ß while I(t) is still small

Slides © Stefan Savage, UCSD

Prevention: Software Quality

Goal: eliminate vulnerability

Static/dynamic testing (e.g. Cowan, Wagner, Engler, etc)
Software process, code review, etc.
Active research community
Taken seriously in industry

Security code review alone for Windows Server 2003 ~ $200M

Traditional problems: soundness, completeness, usability
Practical problems: scale and cost

Slides © Stefan Savage, UCSD

Prevention: Software Heterogeneity
Goal: reduce impact of vulnerability

Use software diversity to tolerate attack
Exploit existing heterogeneity

Junqueria et al, Surviving Internet Catastrophes, USENIX ’05
Create Artificial heterogeneity (hot topic)

Forrest et al, Building Diverse Computer Systems, HotOS ‘97
Large contemporary literature

Open questions: class of vulnerabilities that can
be masked, strength of protection, cost of support

Slides © Stefan Savage, UCSD

Prevention: Software Updating
Goal: reduce window of vulnerability
Most worms exploit known vulnerability (1 day -> 3 months)

Window shrinking: automated patch->exploit
Patch deployment challenges, downtime, Q/A, etc
Rescorla, Is finding security holes a good idea?, WEIS ’04

Network-based filtering: decouple “patch” from code
E.g. TCP packet to port 1434 and > 60 bytes
Wang et al, Shield: Vulnerability-Driven Network Filters for
Preventing Known Vulnerability Exploits, SIGCOMM ‘04
Symantec: Generic Exploit Blocking

Automated patch creation: fix the vulnerability on-line
Sidiroglou et al, Building a Reactive Immune System for
Software Services, USENIX ‘05

Anti-worms: block the vulnerability and propagate
Castaneda et al, Worm vs WORM: Preliminary Study of an Active counter-
Attack Mechanism, WORM ‘04

reactive

proactive

Slides © Stefan Savage, UCSD

Prevention: Hygiene Enforcement

Goal: keep susceptible hosts off network

Only let hosts connect to network if they are
“well cared for”

Recently patched, up-to-date anti-virus, etc…
Automated version of what they do by hand at NSF

Cisco Network Admission Control (NAC)

Slides © Stefan Savage, UCSD

4

What can be done?

Reduce the number of susceptible hosts
Prevention, reduce S(t) while I(t) is still small
(ideally reduce S(0))

Reduce the contact rate
Containment, reduce ß while I(t) is still small

Slides © Stefan Savage, UCSD

Containment

Reduce contact rate

Slow down
Throttle connection rate to slow spread

Twycross & Williamson, Implementing and Testing a Virus
Throttle, USENIX Sec ‘03

Important capability, but worm still spreads…
Quarantine

Detect and block worm

Slides © Stefan Savage, UCSD

Defense requirements

We can define reactive defenses in terms of:
Reaction time – how long to detect, propagate
information, and activate response
Containment strategy – how malicious behavior is
identified and stopped
Deployment scenario - who participates in the
system

Given these, what are the engineering
requirements for any effective defense?

Slides © Stefan Savage, UCSD

Methodology
Simulate spread of worm across Internet topology

Infected hosts attempt to spread at a fixed rate (probes/sec)
Target selection is uniformly random over IPv4 space

Source data
Vulnerable hosts: 359,000 IP addresses of CodeRed v2 victims
Internet topology: AS routing topology derived from RouteViews

Simulation of defense
System detects infection within reaction time
Subset of network nodes employ a containment strategy

Evaluation metric
% of vulnerable hosts infected in 24 hours
100 runs of each set of parameters (95th percentile taken)

Systems must plan for reasonable situations, not the average case

See: Moore et al, Internet Quarantine: Requirements for Containing
Self-Propagating Code, Infocom 2003 for more detailsSlides © Stefan Savage, UCSD

Naïve model:
Universal deployment

Assume every host employs the containment
strategy

Two containment strategies :
Address filtering:

Block traffic from malicious source IP addresses
Reaction time is relative to each infected host
MUCH easier to implement

Content filtering:
Block traffic based on signature of content
Reaction time is from first infection

How quickly does each strategy need to react?
How sensitive is reaction time to worm probe rate?

Slides © Stefan Savage, UCSD

How quickly does each
strategy need to react?

To contain worms to 10% of vulnerable hosts after 24 hours of
spreading at 10 probes/sec (CodeRed-like):

Address filtering: reaction time must be < 25 minutes.
Content filtering: reaction time must be < 3 hours

Address Filtering

Reaction time (minutes)

%
 In

fe
ct

ed
 (9

5th
pe

rc
.)

Reaction time (hours)

%
 In

fe
ct

ed
 (9

5th
pe

rc
.)

Content Filtering:

Slides © Stefan Savage, UCSD

5

How sensitive is reaction time
to worm probe rate?

Reaction times must be fast when probe rates get high:
10 probes/sec: reaction time must be < 3 hours
1000 probes/sec: reaction time must be < 2 minutes

Content Filtering:

probes/second

re
ac

tio
n

tim
e

Slides © Stefan Savage, UCSD

Limited network deployment

Depending on every host to implement containment is
probably a bit optimistic:

Installation and administration costs
System communication overhead

A more realistic scenario is limited deployment in the
network:

Customer Network: firewall-like inbound filtering of traffic
ISP Network: traffic through border routers of large transit ISPs

How effective are the deployment scenarios?
How sensitive is reaction time to worm probe rate under
limited network deployment?

Slides © Stefan Savage, UCSD

How effective are the deployment
scenarios?

%
 In

fe
ct

ed
 a

t 2
4

ho
ur

s (
95

th
pe

rc
.)

To
p 1

00

CodeRed-like Worm

25
%

50
%

75
%

10
0%

To
p 1

0
To

p 2
0

To
p 3

0
To

p 4
0

Al
l

Slides © Stefan Savage, UCSD

How sensitive is reaction time to
worm probe rate?

Above 60 probes/sec, containment to 10% hosts within
24 hours is impossible for top 100 ISPs even with
instantaneous reaction.

re
ac

tio
n

tim
e

probes/second

Top 100 ISPs

Slides © Stefan Savage, UCSD

Defense requirements summary
Reaction time

Required reaction times are a couple minutes or less for CR-style
worms (seconds for worms like Slammer)

Containment strategy
Content filtering is far more effective than address
blacklisting for a given reaction speed

Deployment scenarios
Need nearly all customer networks to provide containment
Need at least top 40 ISPs provide containment; top 100 ideal

Is this possible? Lets see…

Slides © Stefan Savage, UCSD

Outbreak Detection/Monitoring

Two classes of detection
Scan detection: detect that host is infected by
infection attempts
Signature inference: automatically identify content
signature for exploit (sharable)

Two classes of monitors
Ex-situ: “canary in the coal mine”

Network Telescopes
HoneyNets/Honeypots

In-situ: real activity as it happens

Slides © Stefan Savage, UCSD

6

Network Telescopes

Infected host scans for other vulnerable hosts by randomly
generating IP addresses
Network Telescope: monitor large range of unused IP addresses –
will receive scans from infected host
Very scalable. UCSD monitors 17M+ addresses

Slides © Stefan Savage, UCSD

Telescopes + Active Responders

Problem: Telescopes are passive, can’t respond
to TCP handshake

Is a SYN from a host infected by CodeRed or
Welchia? Dunno.
What does the worm payload look like? Dunno.

Solution: proxy responder
Stateless: TCP SYNACK (Internet Motion Sensor),
per-protocol responders (iSink)
Stateful: Honeyd
Can differentiate and fingerprint payload

False positives generally low since no regular traffic

Slides © Stefan Savage, UCSD

HoneyNets

Problem: don’t know what worm/virus would do? No
code ever executes after all.
Solution: redirect scans to real “infectable” hosts
(honeypots)

Individual hosts or VM-based: Collapsar, HoneyStat, Symantec
Can reduce false positives/negatives with host-analysis
(e.g. TaintCheck, Vigilante, Minos) and behavioral/procedural
signatures

Challenges
Scalability
Liability (honeywall)
Isolation (2000 IP addrs -> 40 physical machines)
Detection (VMWare detection code in the wild)

Slides © Stefan Savage, UCSD

The Scalability/Fidelity tradeoff

Live Honeypot

Telescopes +
Responders

(iSink, Internet Motion Sensor)

VM-based HoneynetNetwork
Telescopes
(passive)

Most
Scalable

Highest
Fidelity

Nada

Slides © Stefan Savage, UCSD

New CCIED project:
large scale high-fidelity honeyfarm

Goal: emulate significant fraction of Internet hosts (1M)
Multiplex large address space on smaller # of servers

Temporal & spatial multiplexing

Global
Internet

64x /16
advertised

Physical Honeyfarm Servers

VM VM VM

VM VM VM

VM VM VM

MGMT
Gateway

GRE
Tunnels

Potemkin VMM: large #’s VMs/host
Delta Virtualization: copy-on-write VM image
Flash Cloning: on-demand VM (<1ms)

Slides © Stefan Savage, UCSD

Overall limitations of telescope,
honeynet, etc monitoring

Depends on worms scanning it
What if they don’t scan that range (smart bias)
What if they propagate via e-mail, IM?

Inherent tradeoff between liability exposure and
detectability

Honeypot detection software exists

It doesn’t necessary reflect what’s happening on your
network (can’t count on it for local protection)

Hence, we’re always interested in native detection as
well

Slides © Stefan Savage, UCSD

7

Scan Detection
Idea: detect worm’s infection attempts

In the small: ZoneAlarm, but how to do in the network?

Indirect scan detection
Wong et al, A Study of Mass-mailing Worms, WORM ’04
Whyte et al. DNS-based Detection of Scanning Worms in an Enterprise
Network, NDSS ‘05

Direct scan detection
Weaver et al. Very Fast Containment of Scanning Worms, USENIX Sec
’04

Threshold Random Walk – bias source based on connection success rate
(Jung et al); use approximate state for fast hardware implementation
Can support multi-Gigabit implementation, detect scan within 10 attempts
Few false positives: Gnutella (finding accessing), Windows File Sharing
(benign scanning)

Venkataraman et al, New Streaming Algorithms for Fast Detection of
Superspreaders, just recently

Slides © Stefan Savage, UCSD

Signature inference

Challenge: need to automatically learn a content
“signature” for each new worm – potentially in
less than a second!

Singh et al, Automated Worm Fingerprinting,
OSDI ’04
Kim et al, Autograph: Toward Automated,
Distributed Worm Signature Detection, USENIX
Sec ‘04

Slides © Stefan Savage, UCSD

Approach

Monitor network and look for strings common to
traffic with worm-like behavior
Signatures can then be used for content filtering

SRC: 11.12.13.14.3920 DST: 132.239.13.24.5000 PROT: TCP

00F0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0100 90 90 90 90 90 90 90 90 90 90 90 90 4D 3F E3 77M?.w
0110 90 90 90 90 FF 63 64 90 90 90 90 90 90 90 90 90cd.........
0120 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
0130 90 90 90 90 90 90 90 90 EB 10 5A 4A 33 C9 66 B9ZJ3.f.
0140 66 01 80 34 0A 99 E2 FA EB 05 E8 EB FF FF FF 70 f..4...........p
. . .

PACKET HEADER

PACKET PAYLOAD (CONTENT)

Kibvu.B signature captured by
Earlybird on May 14th, 2004

Slides © Stefan Savage, UCSD

Content sifting

Assume there exists some (relatively) unique
invariant bitstring W across all instances of a
particular worm (true today, not tomorrow...)
Two consequences

Content Prevalence: W will be more common in traffic
than other bitstrings of the same length
Address Dispersion: the set of packets containing W
will address a disproportionate number of distinct
sources and destinations

Content sifting: find W’s with high content
prevalence and high address dispersion and drop
that traffic

Slides © Stefan Savage, UCSD

Address Dispersion Table
Sources DestinationsPrevalence Table

The basic algorithm
Detector in

network
A B

cnn.com

C

DE

Slides © Stefan Savage, UCSD

1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1
Prevalence Table

The basic algorithm
Detector in

network
A B

cnn.com

C

DE

Slides © Stefan Savage, UCSD

8

1 (A)1 (C)
1 (B)1 (A)

Address Dispersion Table
Sources Destinations

1
1

Prevalence Table

The basic algorithm
Detector in

network
A B

cnn.com

C

DE

Slides © Stefan Savage, UCSD

1 (A)1 (C)
2 (B,D)2 (A,B)

Address Dispersion Table
Sources Destinations

1
2

Prevalence Table

The basic algorithm
Detector in

network
A B

cnn.com

C

DE

Slides © Stefan Savage, UCSD

1 (A)1 (C)
3 (B,D,E)3 (A,B,D)

Address Dispersion Table
Sources Destinations

1
3

Prevalence Table

The basic algorithm
Detector in

network
A B

cnn.com

C

DE

Slides © Stefan Savage, UCSD

Challenges

Computation
To support a 1Gbps line rate we have 12us to process
each packet

Dominated by memory references; state expensive
Content sifting requires looking at every byte in a packet

State
On a fully-loaded 1Gbps link a naïve implementation can
easily consume 100MB/sec for tables

Slides © Stefan Savage, UCSD

Kim et al’s solution: Autograph

Pre-filter flows for those that exhibit scanning
behavior (i.e. low TCP connection ratio)

HUGE reduction in input, fewer prevalent substrings
Don’t need to track dispersion at all
Fewer possibilities of false positives

However, only works with TCP scanning worms
Not UDP (Slammer), e-mail viruses (MyDoom), IM-
based worms (Bizex), P2P (Benjamin)

Alternatives? More efficient algorithms.

Slides © Stefan Savage, UCSD

Which substrings to index?

Approach 1: Index all substrings
Way too many substrings too much computation too
much state

Approach 2: Index whole packet
Very fast but trivially evadable (e.g., Witty, Email Viruses)

Approach 3: Index all contiguous substrings of a
fixed length ‘S’

Can capture all signatures of length ‘S’ and larger

A B C D E F G H I J K

Slides © Stefan Savage, UCSD

9

How to represent substrings?

Store hash instead of literal to reduce state
Incremental hash to reduce computation
Rabin fingerprint is one such efficient
incremental hash function [Rabin81,Manber94]

One multiplication, addition and mask per byte

R A N D A B C D O M

R A B C D A N D O M

P1

P2

Fingerprint = 11000000

Fingerprint = 11000000

Slides © Stefan Savage, UCSD

How to subsample?

Approach 1: sample packets
If we chose 1 in N, detection will be slowed by N

Approach 2: sample at particular byte offsets
Susceptible to simple evasion attacks
No guarantee that we will sample same sub-string in
every packet

Approach 3: sample based on the hash of the
substring

Slides © Stefan Savage, UCSD

Value sampling [Manber ’94]

Sample hash if last ‘N’ bits of the hash are equal to the
value ‘V’

The number of bits ‘N’ can be dynamically set
The value ‘V’ can be randomized for resiliency

Ptrack Probability of selecting at least one substring of length S in
a L byte invariant

For 1/64 sampling (last 6 bits equal to 0), and 40 byte substrings
Ptrack = 99.64% for a 400 byte invariant

A B C D E F G H I J K
Fingerprint = 11000000

SAMPLE
Fingerprint = 10000000

SAMPLE

Fingerprint = 11000001

IGNORE

Fingerprint = 11000010

IGNORE

Slides © Stefan Savage, UCSD

Only 0.6% of the 40 byte
substrings repeat more
than 3 times in a minute

Number of repeats

C
um

ul
at

iv
e

fr
ac

tio
n

of
 s

ig
na

tu
re

s

Observation:
High-prevalence strings are rare

Slides © Stefan Savage, UCSD

Efficient high-pass filters for content

Only want to keep state for prevalent substrings
Chicken vs egg: how to count strings without
maintaining state for them?

Multi Stage Filters: randomized technique for
counting “heavy hitter” network flows with low
state and few false positives [Estan02]

Instead of using flow id, use content hash
Three orders of magnitude memory savings

Slides © Stefan Savage, UCSD

Field
Extraction

Comparator

Comparator

Comparator

Counters
Hash 1

Hash 2

Hash 3

Stage 1

Stage 2

Stage 3

ALERT !
If

all counters
above

threshold

Finding “heavy hitters”
via Multistage Filters

Increment

Slides © Stefan Savage, UCSD

10

Multistage filters in action

Grey = other hahes
Yellow = rare hash

Green = common hash

Stage 1

Stage 3

Stage 2

Counters
Threshold

. . .

Slides © Stefan Savage, UCSD

Naïve implementation might maintain a list of sources
(or destinations) for each string hash

But dispersion only matters if its over threshold
Approximate counting may suffice
Trades accuracy for state in data structure

Scalable Bitmap Counters
Similar to multi-resolution bitmaps [Estan03]
Reduce memory by 5x for modest accuracy error

Observation:
High address dispersion is rare too

Slides © Stefan Savage, UCSD

Scalable Bitmap Counters

Hash : based on Source (or Destination)
Sample : keep only a sample of the bitmap
Estimate : scale up sampled count
Adapt : periodically increase scaling factor

With 3, 32-bit bitmaps, error factor = 28.5%

1 1

Hash(Source)

Error Factor = 2/(2numBitmaps-1)

Slides © Stefan Savage, UCSD

Content sifting summary

Index fixed-length substrings using incremental
hashes
Subsample hashes as function of hash value
Multi-stage filters to filter out uncommon strings
Scalable bitmaps to tell if number of distinct
addresses per hash crosses threshold

Now its fast enough to implement

Slides © Stefan Savage, UCSD

Software prototype: Earlybird

AMD Opteron 242 (1.6Ghz)

Linux 2.6

Libpcap

EB Sensor code (using C)

EarlyBird Sensor

TAP
Summary

data

Reporting
& Control

EarlyBird Aggregator

EB Aggregator (using C)

Mysql + rrdtools

Apache + PHP

Linux 2.6

Setup 1: Large fraction of the UCSD campus traffic,
Traffic mix: approximately 5000 end-hosts, dedicated servers
for campus wide services (DNS, Email, NFS etc.)
Line-rate of traffic varies between 100 & 500Mbps.

Setup 2: Fraction of local ISP Traffic,
Traffic mix: dialup customers, leased-line customers
Line-rate of traffic is roughly 100Mbps.

To other sensors and
blocking devices

Slides © Stefan Savage, UCSD

Content Sifting in Earlybird

Repeats DestinationsSourcesKEY

Found
ADTEntry?

Key = RabinHash(“IAMA”) (0.349, 0.037)

IAMAWORM

ADTEntry=Find(Key) (0.021)

Address Dispersion Table

Prevalence Table

YES

is
prevalence >

thold

YES

value
sample

key

NO

Update
Multistage Filter

(0.146)

Update Entry (0.027)
Create & Insert Entry (0.37)

2MB
Multi-stage Filter

Scalable bitmaps with
three, 32-bit stages

Each entry is
28bytes.

Slides © Stefan Savage, UCSD

11

Content sifting overhead

Mean per-byte processing cost
0.409 microseconds, without value sampling
0.042 microseconds, with 1/64 value sampling
(~60 microseconds for a 1500 byte packet,
can keep up with 200Mbps)

Additional overhead in per-byte processing cost
for flow-state maintenance (if enabled):

0.042 microseconds

Slides © Stefan Savage, UCSD

Experience

Generally… ahem... good.
Detected and automatically generated signatures for
every known worm outbreak over eight months
Can produce a precise signature for a new worm in a
fraction of a second

Known worms detected:
Code Red, Nimda, WebDav, Slammer, Opaserv, …

Unknown worms (with no public signatures)
detected:

MsBlaster, Bagle, Sasser, Kibvu, …

Slides © Stefan Savage, UCSD

Sasser

Slides © Stefan Savage, UCSD

Sasser

Slides © Stefan Savage, UCSD

Kibvu
Slower spread (1.5 packets/minute inbound)
Consequently, slower detection (42mins to dispersion of 30)
Response time is wrong metric…

dispersion=1

dispersion=30

dispersion=4

dispersion=9

Slides © Stefan Savage, UCSD

False Negatives

Easy to prove presence, impossible to prove absence

Live evaluation: over 8 months detected every worm
outbreak reported on popular security mailing lists

Offline evaluation: several traffic traces run against
both Earlybird and Snort IDS (w/all worm-related
signatures)

Worms not detected by Snort, but detected by Earlybird
The converse never true

Slides © Stefan Savage, UCSD

12

False Positives

Common protocol
headers

Mainly HTTP and SMTP
headers
Distributed (P2P) system
protocol headers
Procedural whitelist

Small number of popular
protocols

Non-worm
epidemic Activity

SPAM
BitTorrent

GNUTELLA.CONNECT
/0.6..X-Max-TTL:
.3..X-Dynamic-Qu
erying:.0.1..X-V
ersion:.4.0.4..X
-Query-Routing:.
0.1..User-Agent:
.LimeWire/4.0.6.
.Vendor-Message:
.0.1..X-Ultrapee
r-Query-Routing:

Slides © Stefan Savage, UCSD

Limitations/ongoing work

Variant content
Polymorphism, metamorphism
Newsom et al, Polygraph: Automatically Generating
Signatures for Polymorphic Worms, Oakland ‘05

Network evasion
Normalization at high-speed tricky

End-to-end encryption vs content-based security
Privacy vs security policy

Self-tuning thresholds
Slow/stealthy worms
DoS via manipulation

Slides © Stefan Savage, UCSD

Summary
Internet-connected hosts are highly vulnerable to worm outbreaks

Millions of hosts can be “taken” before anyone realizes
If only 10,000 hosts are targeted, no one may notice

Prevention is a critical element, but there will always be outbreaks

Containment requires fully automated response

Scaling issues favor network-based defenses

Different detection strategies, monitoring approaches
Very active research community

Content sifting: automatically sift bad traffic from good

Slides © Stefan Savage, UCSD

