

Asymmetric Encryption

- What if the user and merchant have no prior relationship?
- Asymmetric encryption allows me to encrypt a message for a recipient without knowledge of the recipient's decryption key.

The Fundamental Equation

$Z=Y^{X} \bmod N$

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve.

The Fundamental Equation

$$
Z=Y^{X} \bmod N
$$

When Y is unknown, the problem is known as discrete root finding and is generally believed to be hard to solve ... without the factorization of N .

May 17, 2005

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Compute Y^{X} and then reduce $\bmod \mathrm{N}$.

- If X, Y, and N each are 1,000-bit integers, Y^{X} consists of $\sim 2^{1010}$ bits.
- Since there are roughly 2^{250} particles in the universe, storage is a problem.

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

- Repeatedly multiplying by Y (followed each time by a reduction modulo N) X times solves the storage problem.
- However, we would need to perform ~2900 32-bit multiplications per second to complete the computation before the sun burns out.

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

We can now perform a 1,000-bit modular exponentiation using $\sim 1,500$ 1,000-bit modular multiplications.
$\bullet 1,000$ squarings: $y, y^{2}, y^{4}, \ldots, y^{2^{1000}}$

- ~500 "ordinary" multiplications

The Fundamental Equation

$$
\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{~N}
$$

When Y is unknown, the problem is known as discrete root finding and is generally believed to be hard to solve ... without the factorization of N .

RSA Signatures and Verification

- Not only is $\mathrm{D}(\mathrm{E}(\mathrm{Y}))=\left(\mathrm{Y}^{\mathrm{X}}\right)^{1 / \mathrm{X}} \bmod \mathrm{N}=\mathrm{Y}$, but also $E(D(Y))=\left(Y^{1 / X}\right)^{X} \bmod N=Y$.
- To form a signature of message Y , create $\mathrm{S}=\mathrm{D}(\mathrm{Y})=\mathrm{Y}^{1 / \mathrm{X}} \bmod \mathrm{N}$.
- To verify the signature, check that $E(S)=S^{x} \bmod N$ matches Y.

SSL/PCT/TLS

You (client) Merchant (server)

Let's talk securely $\xrightarrow{\text { Here are the protocols and ciphers I understand. }}$

I choose this protocol and these ciphers. Here is my public key, a cert, a nonce, etc.

Using your public key, I've encrypted a
$\xrightarrow{\text { random symmetric key (and your nonce). }}$

SSL/TLS

All subsequent secure messages are sent using the symmetric key and a keyed hash for message authentication.

Block Cipher Integrity

With ECB mode, identical blocks will have identical encryptions.

This can enable replay attacks as well as reorderings of data. Even a passive observer may obtain statistical data.

Block Cipher Modes

Cipher Block Chaining (CBC) Encryption:

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer \$0,000,002.00 to the account of my good friend Alice.

Stream Cipher Integrity

\bullet It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer $\$ 1,000,002.00$ to the account of my good friend Alice.

May 17, $2005 \quad 39$ 39

One-Way Hash Functions

The idea of a check sum is great, but it is designed to prevent accidental changes in a message.
For cryptographic integrity, we need an integrity check that is resilient against a smart and determined adversary.

One-Way Hash Functions

There are many measures for one-way hashes.

- Non-invertability: given y , it's difficult to find any x such that $H(x)=y$.
- Collision-intractability: one cannot find a pair of values $x^{\prime} \neq x$ such that $\mathrm{H}(x)=\mathrm{H}\left(x^{\prime}\right)$.

