Clustering (Search Engine Results)

CSE 454

Clustering Outline

- Motivation
- Document Clustering
- Offline evaluation
- Grouper I

2000-2005 Etzioni & Weld

- Grouper II
- Evaluation of deployed systems

-O(n²)

2000-2005 Etzioni & Weld

- Linear-time algorithms
 - -K-means (Rocchio, 66)
 - -Single-Pass (Hill, 68)
 - -Fractionation (Cutting et al, 92)
 - -Buckshot (Cutting et al, 92)

Basic Concepts - 4

- What is "right" number of clusters?
 - apriori knowledge
 - default value: "5"
 - clusters up to 20% of collection size
 - choose best based on external criteria
 - Minimum Description Length
 - Global Quality Function
- no good answer

Hierarchical Clustering

Agglomerative
bottom-up

2000-2005 Etzioni & Weld

Initialize: - each item a cluster

- Iterate: select two most similar clusters - merge them
- Halt: when have required # of clusters

Divisive – top-bo	-
	-all items one cluster - select a cluster (least coherent) - divide it into two clusters
Halt:	when have required # of clusters

HAC Often Poor Results - Why?

- Often produces single large cluster
- Work best for:
- -spherical clusters; equal size; few outliers
- Text documents:
 - -no model
 - -not spherical; not equal size; overlap
- Web:

2000-2005 Etzioni & Weld

-many outliers; lots of noise

Suffix Tree Clustering (KDD'97; SIGIR'98) • Most clustering algorithms aren't specialized for text: Model document as Set of words • STC: document = Sequence of words

2000-2005 Etzioni & Weld

STC - Central Idea

Identify base clusters

- -a group of documents that share a phrase
- -use a suffix tree

000-2005 Etzioni & Weld

• Merge base clusters as needed

STC - Outline

Three logical steps:

"Clean" documents

2000-2005 Etzioni & Weld

- Use a *suffix tree* to identify *base clusters* - a group of documents that share a phrase
- Merge base clusters to form clusters

Step 2 - Identify Base Clusters via Suffix Tree

- Build one suffix tree from all sentences of all documents
- Suffix tree node = base cluster
- Score all nodes

2000-2005 Etzioni & Weld

• Traverse tree and collect top k (500) base clusters

Northern Light

- "Custom Folders"
- 20000 predefined topics in a manually developed hierarchy
- Classify document into topics
- Display "dominant" topics in search results

Summary

- Post-retrieval clustering
 - to address low precision of Web searches
- STC

2000-2005 Etzioni & Weld

- phrase-based; overlapping clusters; fast
- Offline evaluation
 - Quality of STC,
 - advantages of using phrases vs. n-grams, FS
- Deployed two systems on the Web
 - Log analysis: Promising initial results

www.cs.washington.edu/research/clustering