Clustering (Search Engine Results)

CSE 454

Motivation

Document Clustering

 Offline evaluation

 Grouper I

 Grouper II

 Evaluation of deployed systems

Low Quality of Web Searches

System perspective:
- small coverage of Web (<16%)
- dead links and out of date pages
- limited resources

IR perspective
(relevancy of doc ~ similarity to query):
- very short queries
- huge database
- novice users

Document Clustering

User receives many (200 - 5000) documents from Web search engine

Group documents in clusters
- by topic

Present clusters as interface

Grouper

www.cs.washington.edu/research/clustering

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Size</th>
<th>Shared Phrases and Sample Document Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>"Clinton's personal rape - 1972", "Hillary Clinton investigation"</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>"Bill Clinton's impeachment", "Clinton impeachment"</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>"Bush's 2004 campaign", "Bush's foreign policy"</td>
</tr>
</tbody>
</table>
Desiderata

- Coherent cluster
- Speed
- Browsable clusters
 - Naming

Main Questions

- Is document clustering feasible for Web search engines?
- Will the use of phrases help in achieving high quality clusters?
- Can phrase-based clustering be done quickly?
Clustering Algorithms

- Hierarchical Agglomerative Clustering
 - $O(n^2)$
- Linear-time algorithms
 - K-means (Rocchio, 66)
 - Single-Pass (Hill, 68)
 - Fractionation (Cutting et al, 92)
 - Buckshot (Cutting et al, 92)

Basic Concepts - 1

- Hierarchical vs. Flat

Basic Concepts - 2

- Hard clustering:
 - each item in only one cluster
- Soft clustering:
 - each item has a probability of membership in each cluster
- Disjunctive / overlapping clustering:
 - an item can be in more than one cluster

Basic Concepts - 3

- Distance / similarity function (for documents)
 - dot product of vectors
 - number of common terms
 - co-citations
 - access statistics
 - share common phrases

Basic Concepts - 4

- What is “right” number of clusters?
 - a priori knowledge
 - default value: “5”
 - clusters up to 20% of collection size
 - choose best based on external criteria
 - Minimum Description Length
 - Global Quality Function
- No good answer

Hierarchical Clustering

- Agglomerative
 - bottom-up

Initialize: each item a cluster
Iterate: select two most similar clusters
 - merge them
Halt: when have required # of clusters
Hierarchical Clustering

- **Divisive**
 - top-bottom

Initialize:
- *all items one cluster*

Iterate:
- select a cluster (least coherent)
 - divide it into two clusters

Halt:
- when have required # of clusters

HAC Similarity Measures

- **Single link**
- **Complete link**
- **Group average**
- **Ward’s method**

Single Link

- cluster similarity = similarity of two most similar members

- $O(n^2)$
- chaining:

 - bottom line:
 - simple, fast
 - often low quality

Complete Link

- cluster similarity = similarity of two least similar members

- worst case $O(n^3)$
- fast algo requires $O(n^2)$ space
- no chaining

- bottom line:
 - typically much faster than $O(n^3)$,
 - often good quality
Group Average

- cluster similarity
 = average similarity of all pairs

HAC Often Poor Results - Why?

- Often produces single large cluster
- Work best for:
 - spherical clusters; equal size; few outliers
- Text documents:
 - no model
 - not spherical; not equal size; overlap
- Web:
 - many outliers; lots of noise

Example: Clusters of Varied Sizes

k-means; complete-link; group-average:

- single-link: chaining,
 but succeeds on this example

Example - Outliers

HAC:

Suffix Tree Clustering

(KDD’97; SIGIR’98)

- Most clustering algorithms aren’t *specialized* for text:
 Model document as *set* of words
- STC:
 document = *sequence* of words

STC Characteristics

- Coherent
 - phrase-based
 - overlapping clusters
- Speed and Scalability
 - linear time; incremental
- Browsable clusters
 - phrase-based
 - simple cluster definition
STC - Central Idea

- Identify **base clusters**
 - a group of documents that share a phrase
 - use a **suffix tree**
- Merge base clusters as needed

STC - Outline

Three logical steps:
- “Clean” documents
- Use a **suffix tree** to identify **base clusters** - a group of documents that share a phrase
- Merge base clusters to form clusters

Step 1 - Document “Cleaning”

- Identify sentence boundaries
- Remove
 - HTML tags,
 - JavaScript,
 - Numbers,
 - Punctuation

Step 2 - Identify Base Clusters via Suffix Tree

- Build one suffix tree from all sentences of all documents
- Suffix tree node = base cluster
- Score all nodes
- Traverse tree and collect top k (500) base clusters

Example - suffix tree of the strings:

1) "cats eat cheese"
2) "mice eat cheese too" and
3) "cats eat mice too"

Suffix Tree

Example - suffix tree of the string: (1) "cats eat cheese"
Step 3 - Merging Base Clusters

- **Motivation:** Similar documents share multiple phrases
- Merge base clusters based on the overlap of their document sets
- **Example (query: “salsa”)**
 - “tabasco sauce” docs: 3, 4, 5, 6
 - “hot pepper” docs: 1, 3, 5, 6
 - “dance” docs: 1, 2, 7
 - “latin music” docs: 1, 7, 8

Average Precision - WSR-SNIP

- Average precision increase: 16% over k-means (not stat. sig.)

Average Precision - WSR-DOCS

- Average precision increase: 45% over k-means (stat. sig.)

Grouper II

- **Dynamic Index:**
 - Non-merged based clusters
- **Multiple interfaces:**
 - List, Clusters + Dynamic Index (key phrases)
- **Hierarchical:**
 - Interactive “Zoom In” feature
 - (similar to Scatter/Gather)

Evaluation - Log Analysis

- Number of clusters followed
- Number of documents followed
Northern Light

- “Custom Folders"
- 20000 predefined topics in a manually developed hierarchy
- Classify document into topics
- Display “dominant” topics in search results

Summary

- Post-retrieval clustering
 - to address low precision of Web searches
- STC
 - phrase-based; overlapping clusters; fast
- Offline evaluation
 - Quality of STC,
 - advantages of using phrases vs. n-grams, FS
- Deployed two systems on the Web
 - Log analysis: Promising initial results

www.cs.washington.edu/research/clustering