

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld

Ranking Search Results

- TF / IDF Calculation

Tag Information

- Title, headers

Font Size / Capitalization
Anchor Text on Other Pages
Link Analysis

- HITS - (Hubs and Authorities)
- PageRank

4/26/2005 9:44 AM

Authority and Hub Pages (2)

- Authorities and hubs for a query tend to form a bipartite subgraph of the web graph.

- A page can be a good authority and a good hub. 4/26/2005 9:44 AM

Copyright © 2000-2005 D.S.Weld

Stability

- Stability

small changes to graph \rightarrow small changes to weights.

- Conclusion

HITS is not stable.
But PageRank is quite stable!

Details in a few slides

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld

Pagerank Intuition

Think of Web as a big graph.
Suppose surfer keeps randomly clicking on the links. Importance of a page = probability of being on the page

Derive transition matrix from adjacency matrix
Suppose $\exists \mathrm{N}$ forward links from page P
Then the probability that surfer clicks on any one is $1 / \mathrm{N}$

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld

Problem: PageRank Sinks.

Sinks = Sets of Nodes with no out-edges.
Why is this a problem?

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld

Computing PageRank - Example

Matrix Representation

Let M be an $\mathrm{N} \times \mathrm{N}$ matrix
$\mathrm{m}_{\mathrm{uv}}=1 / \mathrm{N}_{\mathrm{v}}$ if page v has a link to page u
$\mathrm{m}_{\mathrm{uv}}=0$ if there is no link from v to u
Let R_{0} be the initial rank vector
Let R_{i} be the $\mathrm{N} \times 1$ rank vector for $\mathrm{i}^{\text {th }}$ iteration $\quad \mathbf{R}_{0}$

Example - Conclusions

- Page \mathbf{C} has highest importance in page graph!
- Page A has the next highest:

Convergence requires

- Many iterations
- Is it guaranteed??

Linear Algebraic Interpretation

- PageRank = principle eigenvector of \mathbf{M}^{*}
- in limit
- HITS = principle eigenvector of $\mathbf{M}^{*} \times\left(\mathbf{M}^{*}\right)^{T}$
- Where [] denotes transpose $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right]$
- Can prove PageRank is stable
- And HITS isn't

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld
18

Stability Analysis

Make 5 subsets by deleting 30\% randomly

1	1	3	1	1	1
2	2	5	3	3	2
3	3	12	6	6	3
4	4	52	20	23	4
5	5	171	119	99	5
6	6	135	56	40	8
7	10	179	159	100	7
8	8	316	141	170	6
9	9	257	107	72	9
10	13	170	80	69	18

- PageRank much more stable

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld
19

Efficient Computation: Preprocess

```
- Remove 'dangling' nodes
- Pages w/ no children
- Then repeat process
- Since now more danglers
- Stanford WebBase
- 25 M pages
- 81 M URLs in the link graph
- After two prune iterations: 19 M nodes
```

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld
21

Defining PageRank

Let u be a web page,
$\mathrm{F}_{\mathrm{u}}=$ set of pages u points (forward) to,
$B_{u}=$ set of pages that point to u (i.e. from behind),
$\mathrm{N}_{\mathrm{u}}=\left|\mathrm{F}_{\mathrm{u}}\right|$ be the number pages in F_{u}.
The rank (importance) of page u ... (first cut):

$$
\mathrm{R}(\mathrm{u})=\sum_{\mathrm{v} \in \mathrm{~B}_{\mathrm{u}}}\left(\mathrm{R}(\mathrm{v}) / \mathrm{N}_{\mathrm{v}}\right)
$$

Compute Iteratively:

$$
R_{i}(u)=\sum_{v \in B_{u}}\left(R_{i-1}(v) / N_{v}\right)
$$

4/26/2005 9:44 AM
Copyright © 2000-2005 D.S.Weld

Practicality

- Challenges

- M no longer sparse (don't represent explicitly!)
- Data too big for memory (be sneaky about disk usage)
- Stanford version of Google :
- 24 million documents in crawl
- 147GB documents
- 259 million links
- Computing pagerank "few hours" on single 1997 workstation
- But How?
- Next discussion from Haveliwala paper...

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld 20

Representing ‘Links’ Table

- Stored on disk in binary format

Source node
(32 bit int)
:---:
0
1
2

- Size for Stanford WebBase: 1.01 GB
- Assumed to exceed main memory

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld 22

If memory is big enough to hold Source \& Dest

- IO cost per iteration is | Links|
- Fine for a crawl of 24 M pages
- But web > 8 B pages in 2005 [Google]
- Increase from 320 M pages in 1997 [NEC study]

If memory is big enough to hold just Dest

- Sort Links on source field
- Read Source sequentially during rank propagation step
- Write Dest to disk to serve as Source for next iteration
- IO cost per iteration is \mid Source $|+|$ Dest $|+|$ Links \mid

If memory can't hold Dest

- Random access pattern will make working set $=\mid$ Dest \mid
- Thrash!!!

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld 25
25

Block-Based Algorithm

Partition Dest into B blocks of \mathbf{D} pages each

- If memory = P physical pages
- D < P-2 since need input buffers for Source \& Links

Partition Links into B files

- Links ${ }_{i}$ only has some of the dest nodes for each source
- Links only has dest nodes such that
- DD*i $<=$ dest $<$ DD $^{*}(i+1)$
- Where $\mathrm{DD}=$ number of 32 bit integers that fit in D pages

	日 B \square B Dest	$=$			
4/26/2005 9:44 AM		Copyr	ght © 2000-2005 D.S.Weld		26

Analysis of Block Algorithm

- IO Cost per iteration =
- B*| Source $|+|$ Dest $|+|$ Links $\left.\right|^{*}(1+\mathrm{e})$
- e is factor by which Links increased in size
- Typically 0.1-0.3
- Depends on number of blocks
- Algorithm ~ nested-loops join

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld 28

Adding PageRank to a SearchEngine

- Weighted sum of importance+similarity with query
- Score(q, d)
$=\mathbf{w} * \operatorname{sim}(\mathbf{q}, \mathrm{p})+(1-\mathrm{w}) * \mathbf{R}(\mathbf{p}), \quad$ if $\operatorname{sim}(\mathbf{q}, \mathrm{p})>0$
$=0$, otherwise
- Where
$-0<w<1$
$-\operatorname{sim}(q, p), R(p)$ must be normalized to $[0,1]$.

Summary of Key Points

PageRank Iterative Algorithm
Rank Sinks
Efficiency of computation - Memory!

- Single precision Numbers.
- Don't represent M* explicitly.
- Break arrays into Blocks.
- Minimize IO Cost.

Number of iterations of PageRank.
Weighting of PageRank vs. doc similarity.

4/26/2005 9:44 AM Copyright © 2000-2005 D.S.Weld
31

