
1

4/14/2005 1:17 PM 1Copyright © Kambhampati / Weld / Liu 2002,2005

CSE 454

Synchronization, Monitors,
Deadlocks

4/14/2005 1:17 PM 2Copyright © Kambhampati / Weld / Liu 2002,2005

Course Overview

Systems Foundation: Networking & Clusters

Datamining

Synchronization & Monitors

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info Extraction Ecommerce

Tod
ay

4/14/2005 1:17 PM 3Copyright © Kambhampati / Weld / Liu 2002,2005

Course Overview

Systems Foundation: Networking & Clusters

Datamining

Synchronization & Monitors

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info Extraction Ecommerce

Thu
rsd

ay

4/14/2005 1:17 PM 4Copyright © Kambhampati / Weld / Liu 2002,2005

Reading
• Focused Crawling: A New Approach To Topic-

Specific Web Resource Discovery,
• Efficient Crawling Through URL Ordering,

– Ideas may well help your crawler find webcams
– Read to the extent that they are helpful

• The Anatomy Of A Large-Scale Hypertextual Web
Search Engine
– “Must” reading for everyone

4/14/2005 1:17 PM 5Copyright © Kambhampati / Weld / Liu 2002,2005

Threads and processes

• M ost moder n OS’ ssuppor t two entit ies:
– the processdefines the address space and general process

attributes (such as open files, etc.)

– the thread defines a sequential execution stream within a
process

• A thr ead is bound to a single process
– processes can have multiple threads executing within them

– sharing data between threads is cheap: all see same address
space

• Threads become the unit of scheduling
– processes are just containers in which threads execute

4/14/2005 1:17 PM 6Copyright © Kambhampati / Weld / Liu 2002,2005

Thread Design Space

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,

Linux, …

2

4/14/2005 1:17 PM 7Copyright © Kambhampati / Weld / Liu 2002,2005

Synchronization
• Threads cooper ate in multithreaded programs

– to share resources, access shared data structures
• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution
• e.g., a disk reader thread hands off a block to a network writer

• For correctness, we have to contr ol this cooper ation
– must assume threads interleave executions arbitrarily and at

different rates
• scheduling is not under application writers’ control

– we control cooperation using synchronization
• enables us to restrict the interleaving of executions

• Note: this also applies to processes, not j ust threads
– and it also applies across machines in a distributed system

4/14/2005 1:17 PM 8Copyright © Kambhampati / Weld / Liu 2002,2005

Shared Resources

• Focus on coor dinating access to shared r esources
– basic problem:

• two concurrent threads are accessing a shared variable

• if the variable is read/modified/written by both threads, then access
to the variable must be controlled

• otherwise, unexpected results may occur

• Over view:
– mechanisms to control access to shared resources

• low level mechanisms like locks

• higher level mechanisms like monitors and condition variables

– patterns for coordinating access to shared resources
• bounded buffer, producer-consumer, …

4/14/2005 1:17 PM 9Copyright © Kambhampati / Weld / Liu 2002,2005

The classic example
• Suppose we have to implement a function to withdraw

money from a bank account:

int withdraw(account, amount) {

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

• Now suppose that you and your S.O. share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines, and

simultaneously withdraw $90.00 from the account?

4/14/2005 1:17 PM 10Copyright © Kambhampati / Weld / Liu 2002,2005

Example continued
• Represent the situation by creating a separate thread for

each person to do the withdrawals
– have both threads run on the same bank mainframe:

• What’s the problem with this?
– what are the possible balance values after this runs?

int withdraw(account, amount) {

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

int withdraw(account, amount) {

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

4/14/2005 1:17 PM 11Copyright © Kambhampati / Weld / Liu 2002,2005

Interleaved Schedules
• The problem is that the execution of the two threads can

be inter leaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’ s happy, the bank or you? ;)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch

4/14/2005 1:17 PM 12Copyright © Kambhampati / Weld / Liu 2002,2005

The crux of the matter

• The problem: two concurrent threads access a
shared resource (account) without any
synchronization
– creates a race condition
– output is non-deterministic, depends on timing

• We need mechanisms for controlling access to shared
resour ces in the face of concurrency
– so we can reason about the operation of programs
– essentially, re-introducing determinism

• Synchronization is necessar y for any shared data
str ucture
– buffers, queues, lists, hash tables, …

3

4/14/2005 1:17 PM 13Copyright © Kambhampati / Weld / Liu 2002,2005

When are Resources Shared?
• Local var iables are not shared

– refer to data on the stack, each thread has its own stack
– never pass/share/store a pointer to a local variable on another

thread’ s stack

• Global var iables are shared
– stored in the static data segment, accessible by any thread

• Dynamic objects are shared
– stored in the heap, shared if you can name it

• in C, can conjure up the pointer
– e.g. void * x = (void *) 0xDEADBEEF

• in Java, strong typing prevents this
– must pass references explicitly

4/14/2005 1:17 PM 14Copyright © Kambhampati / Weld / Liu 2002,2005

Mutual Exclusion

• We want to use mutual exclusion to synchronize
access to shared resources

• Code that uses mutual exclusion to synchronize
its execution is called a cr itical section
– only one thread at a time can execute in the critical

section

– all other threads are forced to wait on entry

– when a thread leaves a critical section, another can enter

4/14/2005 1:17 PM 15Copyright © Kambhampati / Weld / Liu 2002,2005

Critical Section Requirements
• Mutual exclusion

– at most one thread is in the critical section

• Progress
– if thread T is outside the critical section, then T cannot prevent

thread S from entering the critical section

• Bounded waiting (no starvation)
– if thread T is waiting on the critical section, then T will eventually

enter the critical section
• assumes threads eventually leave critical sections

• Perfor mance
– the overhead of entering and exiting the critical section is small

with respect to the work being done within it

4/14/2005 1:17 PM 16Copyright © Kambhampati / Weld / Liu 2002,2005

Mechanisms for Building Critical
Sections

• Locks
– very primitive, minimal semantics; used to build others

• Semaphores
– basic, easy to get the hang of, hard to program with

• M onitors
– high level, requires language support, implicit operations
– easy to program with;
– E.g., Java “ synchronized()”

• M essages
– simple model of communication and synchronization based on

(atomic) transfer of data across a channel
– direct application to distributed systems

4/14/2005 1:17 PM 17Copyright © Kambhampati / Weld / Liu 2002,2005

Locks
• A lock is a obj ect (in memor y) that provides the

following two oper ations:
– acquire(): a thread calls this before entering a critical section
– release(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()
– between acquire() and release(), the thread holdsthe lock
– acquire() does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)

– so: what can happen if the calls aren’ t paired?

• Implementation requires hardware suppor t
– atomic test-and-set instruction
– disable interrupts

4/14/2005 1:17 PM 18Copyright © Kambhampati / Weld / Liu 2002,2005

Using Locks

• What happens when green tr ies to acquire the lock?
• Why is the “ retur n” outside the cr it ical section?

– is this ok?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

4

4/14/2005 1:17 PM 19Copyright © Kambhampati / Weld / Liu 2002,2005

Deadlock

• When two threads are waiting on a lock
held by the other

Dan: “Please get your clothes on Galen”

Galen: “Give me another math problem, Dad.”

Dan: “ I’ ll do that after you start getting your clothes
on.”

Galen: “ I won’ t get my clothes on until you give me
a problem.”

4/14/2005 1:17 PM 20Copyright © Kambhampati / Weld / Liu 2002,2005

int dan() {

acquire(lock1);

acquire(lock2);

critical

section

code

release(lock2);

release(lock1);

return;

}

acquire(lock1)

acquire(lock2)

acquire(lock1)

acquire(lock2)

That’s all folks…

int galen() {

acquire(lock2);

acquire(lock1);

critical

section

code

release(lock1);

release(lock2);

return;

}

4/14/2005 1:17 PM 21Copyright © Kambhampati / Weld / Liu 2002,2005

Avoiding Deadlock
• Simplest method
• Focus on lock order
• Every procedure should get locks in same

order
– What if use overlapping sets of locks?

4/14/2005 1:17 PM 22Copyright © Kambhampati / Weld / Liu 2002,2005

Monitors

• A programming language constr uct that suppor ts
contr olled access to shar ed data
– synchronization code added by compiler, enforced at runtime
– why does this help?

• M onitor is a software module that encapsulates:
– shared data structures
– proceduresthat operate on the shared data
– synchronization between concurrent threads invoking those

procedures

• M onitor protects the data from unstr uctur ed access
– guarantees one may only access data through procedures
– hence in legitimate ways

4/14/2005 1:17 PM 23Copyright © Kambhampati / Weld / Liu 2002,2005

A monitor

shared data

waiting queue of threads
trying to enter the monitor

operations (procedures)at most one thread
in monitor at a

time

4/14/2005 1:17 PM 24Copyright © Kambhampati / Weld / Liu 2002,2005

Monitor facilities
• M utual exclusion

– only one process can be executing inside at any time
• thus, synchronization implicitly associated with monitor

– if a second process tries to enter a monitor procedure, it blocks
until the first has left the monitor

• more restrictive than locks, semaphores!
• but easier to use most of the time

• Once inside, a process may discover it can’ t continue,
and may wish to sleep
– or, allow some other waiting process to continue
– condition variablesprovided within monitor

• processes can wait or signal others to continue
• condition variable can only be accessed from inside monitor

5

4/14/2005 1:17 PM 25Copyright © Kambhampati / Weld / Liu 2002,2005

Condition Variables
• A place to wait; sometimes called a r endezvous point
• Three oper ations on condit ion var iables

– wait(c)
• wait for somebody else to signal condition
• thus, condition variables have wait queues

– signal(c)
• release monitor lock, so somebody else can get in
• wake up at most one waiting process/thread
• if no waiting processes, signal is lost

– broadcast(c)
• release monitor lock
• wake up all waiting processes/threads

4/14/2005 1:17 PM 26Copyright © Kambhampati / Weld / Liu 2002,2005

Bounded Buffer using Monitors
M onitor bounded_buffer {

buffer resources[N];
condit ion not_full, not_empty;

procedure add_entry(resource x) {
while(array “ resources” is full)

wait(not_full);
add “ x” to array “ resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

while (array “ resources” is empty)
wait(not_empty);

*x = get resource from array “ resources”
signal(not_full);

}
}

4/14/2005 1:17 PM 27Copyright © Kambhampati / Weld / Liu 2002,2005

Two Kinds of Monitors
• Hoare monitor s: signal(c) means

– run waiter immediately
– signaler blocks immediately

• condition guaranteed to hold when waiter runs
• but, signaler must restore monitor invariants before signaling!

• M esa monitors: signal(c) means
– waiter is made ready, but the signaler continues

• waiter runs when signaler leaves monitor (or waits)
• condition is not necessarily true when waiter runs again

– signaler need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• must recheck conditional case

4/14/2005 1:17 PM 28Copyright © Kambhampati / Weld / Liu 2002,2005

Examples
• Hoare monitor s

– if (notReady)
• wait(c)

• M esa monitors
– while(notReady)

• wait(c)

• M esa monitors easier to use
– more efficient
– fewer switches
– directly supports broadcast

4/14/2005 1:17 PM 29Copyright © Kambhampati / Weld / Liu 2002,2005

Synchronization in the 454 Project
• M ultiple cr awler threads

– More efficient than requesting, waiting for single page to
download while doing nothing else (interleave I/O with
computation)

• What are the shared resour ces?
– Page Repository?
– Queues?

• Only one thread may take pages off a queue, but
• What about adding to a thread’s queue

– Everything?
• Consistent view during checkpointing

