The AGP Webcam Search Engine
Chris Gillum, Tim Prouty and Craig Atkinson

{cgillum,tprouty,craigatk}@cs.washington.edu

UW CSE 454: Internet Services Capstone - Spring 2005
Advised by Professor Dan Weld

Abstract
In this paper, we present the AGP (Atkinson, Gillum, Prouty) Search Engine, an internet crawler based on the open-source Nutch project that specializes in searching for webcams. Nutch was chosen as the engine to modify because it was a full-featured search engine and building on a working search engine allowed us more time to focus on the webcam aspect of search.
Searching the web for webcams is a problem far more difficult and less defined than text search, which is done by the current search engines created by Google, MSN, and Yahoo!. The focus of our search engine was to tackle this problem using contextual page information and attributes of image files such as last-modified time and aspect ratio. Two approaches were utilized: static parameters and machine learning strategies. Given these strategies, we will look at the precision and recall of search results on our generated index.
Crawling/Fetching Process

Crawling
To provide the crawler with a starting set of URLs, we created a list of websites that contained existing, manually-compiled, webcam directories, as well as the results of querying various search engines with the word “webcam.” Using this seed list of URLs, we were able to get a fairly large number of webcam sites with crawl depths of only 2 or 3.

Fetching
We modified the Nutch fetcher to only store webpages that contained webcams. (The method of determining whether a webpage contained a webcam or not is described below in the Machine Learning section.) Despite only storing webcam webpages, we were able to preserve the link structure necessary for results ranking and overall fetching by only storing the outlinks of non-webcam pages, not their content. With this method, we drastically reduced the necessary disk space for the larger crawls required to find a significant number of webcams.

Content
In the fetching process, the fetcher grabs the necessary content to store in the Nutch web database. This content includes the dimensions of probable webcam images, the last time these images were updated, and their alt-text in their HTML image tags. Also, an open-source IP-address-to-location database is queried (more details below). Together, all of this information is used by the machine learning algorithm to determine whether a page contains a webcam, and is returned with the search results when a user queries the search engine.

Location Information

When a webpage is determined to have a webcam, its location is resolved by querying the open-source IP-address-to-location database maintained at www.hostip.info. This query returns an XML document containing the IP-address’ estimated country, state, and city of origin, as well as its estimated latitude and longitude. The country of origin is the most reliable, with an accuracy rate of between 90-95 percent. However, the city and state estimation is only accurate 50-55 percent of the time. In the future, other sources of location information, such as page content scraping, could combine with this information to create a more reliable location-estimation system.
Machine Learning

Decision Tree Induction

The implementation for machine learning that was chosen for this project was Decision Tree Induction. This learning method was chosen because of its simplicity and ease of implementation. Decision tree induction, while one of the simplest algorithms, has proven very successful in numerous areas of Artificial Intelligence.

Classification
Our decision tree is used to perform Boolean classification, where we simply determine whether or not an image is a webcam. When integrating decision trees into our webcam classification, we specified a set of attributes to be used to describe each image object pulled from the web. These attributes include aspect ratio, image age (difference between fetch time and the image’s last-updated-time on the server), file extension, etc. A comprehensive table of attributes and their possible values are specified in figure 1.1.

	Attribute Name
	Possible Attribute Values (comma-seperated)

	Aspect Ratio (width/height)
	Unknown, 0.0-1.0, 1.0-1.5, >1.5

	Age
	Unknown, 0-10mins, 10-50mins, 1hr-24hr, >24hr

	File-extension
	JPG, GIF, other

	Title contains “webcam”
	True, False

	Body contains “webcam”
	True, False

	URL contains “cam”
	True, False

Figure 1.1: The attributes (and their values) used to describe web images in the decision tree learning process. Note
that ‘unknown’ is a valid value for some of the attributes.
Learning

The learning algorithm works by reading in a training set of image information, analyzing the usefulness of each of the attributes in determining whether an image is a webcam, and building a tree by placing the most decisive attribute-decision nodes at the top of the tree. Below is an example of a decision tree that could be used to determine if images are webcam images:

[image: image1.emf]Age

No Yes

0-10 minutes

> 24 hours

Aspect Ratio File Extension

10-60 minutes 1-24 hours

Yes

No

4/3

Other

Yes

No

No

JPG

GIF

PNG

To properly use decision trees in our crawl, the fetcher first builds the decision tree by examining 100 images (the training set), 50 of which are legitimate webcams and the other 50 of which are non-webcam images. After the training is complete, the crawler begins searching the web and using the produced decision tree to determine if encountered images are webcams.

Pitfalls

While decision tree induction works well for some situations, it exhibits shortcomings when used in the context of web search. For example, decision tree induction works poorly when using text as part of the classification process. Over-fitting becomes a large problem mainly because the set of all words that can be found on a page is so large. To avoid over-fitting, we only checked for very specific words when doing classification, but we lose out on the ability to fully classify webcams based on the context of their pages. Naïve Bayes, in this case, would present a more appropriate learning algorithm for webcam classification. We chose not to implement Naïve Bayes, however, because of time and experience limitations.
Precision/Recall (Quantitative Analysis) [image: image2.emf]0

10

20

30

40

50

60

70

80

90

Last updated Aspect ratio Static image properties Machine learning

Precision

Recall

Setup
Using the principles of precision/recall, we created a system to measure the performance of our crawler. Our measures of performance were: recall – the number of actual webcams returned by the crawler divided by the total number of real webcams in our crawl set, and precision – the number of actual webcams returned by the crawler divided by the total number of webcams our crawler returned. We measured these values by creating a specific crawl set that our system crawled and then analyzed. The human generated crawl set included the page url for the crawler to use, and also the webcam url for the analyzer to use in determining precision/recall.
Results
We ran a few different algorithms at the time of the crawl to determine which images on a page were webcams. Last updated, simply returned the differce between the time the image was crawled and the time the image was last updated. Aspect ratio divided the width by the height to get a comparable value. As one would predict, last updated and aspect ratio had a very high recall, because they returned a lot of pages, and because of this, their precision was low. The aspect ratio was particularly bad in precision because it returned pretty much every image that was reasonably square. Our two more advanced algorithms used combinations of these primitives to produce results with higher precision. The static image properties most likely performed better than our machine learning algorithm due to the limited size of our training data. Because training data requires human input, with more thorough creation of training data, our machine learning algorithm probably would have surpassed the static image properties.
Search Results

Webcam Thumbnails

When a user issues a query to the search engine, a small thumbnail of the webcam image is generated and displayed with the search results. To generate these thumbnails, the searcher grabs the webcam images from their remote servers, resizes them down to thumbnail size, and then stores them on the machine where the search engine resides. By having the searcher store the thumbnail images, we avoid leeching bandwidth from other web servers. Once a thumbnail has been generated and stored for a specific webcam, it is refreshed every hour to provide a current image in the search results.

Location Map

Another feature provided by the HostIP location database is an animated map showing the location of a given IP address. Each webcam returned in the search results contains a link to this map. However, since this map is generated from the city and state returned from the location database, it is only accurate about half the time (as mentioned above).
The Mistakes We Made

Time Allocation

Certainly, the biggest mistake that was made when doing this project was not allocating enough time to make the product stable and well tested. Search engines, as we have learned, are very difficult to debug, especially when containing such a large amount of code, like Nutch does. These types of mistakes fall into the category of Software Engineering blunders, and essentially jeopardize the ability of the group to turn in a working product on time.
What We Learned

The Internet Community

One of the more surprising things we learned as a group is the rules and etiquette of internet services and applications. We learned the importance of keeping a web crawler under control so as not to upset other web site or ISP administrators (who might think our crawler is a virus or a D.O.S. attack). We also learned about the reluctance of many site owners to share resources, such as images, with other web sites. The purpose of the thumbnail caching system that Craig designed was simply to address this issue, because our images might end up being blocked by their owner.

Appendix (who did what):
Chris:

· Implemented machine learning algorithm
· Propagation of webcam properties to UI
· Search only returns webcam by changing page information in web database
· Modified fetcher to store image properties
Craig:
· Research on web etiquette

· Generation and display of webcam thumbnails

· Retrieval, parsing and display of location information

· Facilitated Tomcat deployment
Tim:
· Modified fetcher to retrieve images
· Modified fetcher to use HTTP 1.1 persistent connections for faster crawling

· Setup and ran test systems

· Precision and recall analysis

· Integrated machine learning code with fetcher
_1179550524.vsd
�

�

Age�

No�

Yes�

0-10 minutes�

> 24 hours�

Aspect Ratio�

File Extension�

�

10-60 minutes�

1-24 hours�

Yes�

No�

�

4/3�

Other�

Yes�

No�

No�

�

JPG�

GIF�

PNG�

