PAGE
8

CamHunt

Michael Lindmark, Jonathan Su, Jenny Yuen

{mikerl, jonsu, jenny}@cs.washington.edu

Abstract
We have designed and implemented CamHunt, a web cam search engine aimed at providing users with a efficient way of searching for and accessing webcams on the internet. Much like popular search engines such as Google and MSN Search, we aim to provide users with access to as much information as possible, as quickly as possible. However, users of CamHunt will be looking for a very specific band of information, webcams. In order to be useful, CamHunt must return additional information specific to webcams along with its search results.

CamHunt performs an initial crawl based on a seed list of webcam sites, and then proceeds to narrow this list of sites down to only those we believe are webcams, using our advertisement/non-advertisement classifier. Furthermore, we gather various other properties about the webcams, including update frequency, indoor/outdoor, location, orientation, and sunrise/sunset time.
In this report, we present our design and architecture, and discuss the highlights and flaws of many aspects of our design. Furthermore, we present measurements of the success of our ad/non-ad image classifier, as well as discussing the overall success of CamHunt.
The Goal – Webcam Search
In this project our goal was to build a search engine to find, classify, and index webcams, and provide users with an intuitive way to search them. Indeed, a long term goal would be to build a large index of cams containing the thousands of cams on the web, but for the span of this project, our priority was to go for precision on our classification and indexing of cam pages over sheer volume.
We wanted to be accurate in classifying web pages between those pages containing webcams and those that did not, so that users would not have to wade through large amounts of false positives in their search results. In addition, we wanted to provide users with additional information about each cam page along with the search results: whether the cam is active or dead, the update frequency of the cam, whether the cam is indoors or outdoors, where the cam was located, the sunrise/sunset time at that location, and the orientation of the cam.
System Architecture
We first perform a focused web crawl using a modified nutch crawler to look for webcam sites by recognizing page features that webcam sites share. The focusing utilizes strings in the url and document content to identify potential webcam directories and individual webcam sites. Starting the crawler with a seed list of 200 Google search results for “webcam” and terminating at a depth of seven we downloaded approximately twenty thousand pages. This list is filtered down to two thousand but removing pages containing certain adult terms to remove adult themed cams and large amounts of non-cam pages. From this, we generate a list of possible (webcam page URL, camID) pairs. We split this list up into lists of 50 such pairs, and then for each of these lists, we spawn a separate process that does the rest of the processing (thereby multithreading our classification process, which is the most time consuming of all our processes).
After crawling, we have a list of possible (webcam page URL, camID) pairs, which we feed to our classifier to determine whether or not this page actually contains a cam. First, we extract all the image tags from the candidate pages. For each of these images, we extract the entropy, the ratio of used vs. non-used bins in the corresponding normalized color histogram, width, height and aspect ratio. These features are input into a multilayer perceptron classifier that determines if the image is an ad or not. If there are any non-ad images on the page, we extract the image that has the highest probability of being a non-ad, and write a (cam page URL, cam image URL, camID) tuple to our list of pages to further process.

The page/image pairs that pass the ad/non-ad filter are then run through a classification process that attempts to extract the following properties of the cam:

· Active or dead: Based on the update frequency, discussed below, we check if we were able to determine a frequency. If we cannot detect a frequency, we classify it as dead. Otherwise, we were able to detect a frequency, and we classify the cam as active.
· Update frequency: We set a time interval at one minute, as we decided any finer granularity would not benefit the user. For ten sequential periods of this interval, we download the webcam image and compare it with the one downloaded in the previous time interval, by comparing the “last modified date” of the images. Determine the percentage of images that changed, and if this percentage is greater than some set threshold, we have found the frequency. Otherwise, we will increase the interval time by a factor of 2, and repeat. We continue to do this until we either find the frequency, or reach a preset maximum interval time.

· Location: We determine location by IP address. We grab the IP address of the page on which the cam is located and not the IP address of the cam image itself. This is because often times the image is hosted on some general webcam service server, which will be less accurate than the page on which it is hosted. However, we realize that often times even the IP address of the page is not very accurate as people often host pages on servers that are no where near where the cam actually exists. We talk about how we could improve this in the “improvements” section below. Once we have the IP address, we ping a service called “InternetFrog.com” that gives us a latitude and longitude, based on their IP address/Lat/Long database.

· Indoor/Outdoor: The images that are determined as to be webcams are polled every 30 minutes for 24 hours to create a CamSequence. The mean intensity of each image in the ordered sequence is extracted and the variance of a set of 4 consecutive means is computed. After this, we count the number of significant and non significant variations using a significance threshold determined by observing various samples. This exploits the property of natural illumination present in outdoor cams that causes smooth changes in the intensities where the only significant variations are during sunrise and sunset. Indoor cams, on the other hand, are either subject to no significant changes, for example, a cam monitoring results from a printer, or to a large number of significant variations, a person appearing in front of the camera, lights of a room turning on and off, which cause variations outside the range of variations in outdoor cams.

· Sunrise/Sunset times: In case a cam is an outdoor cam, we know that there are two times during the day where the most significant illumination variations happened. Using the data collected from the indoor/outdoor determination step, we can determine which image corresponds closest to the sunrise and to the sunset. From the polling process we are able to associate the times when the sunrise and sunset images were last modified.

· Orientation: If a cam is outside, we go through a series of processing steps. First we pull the sunrise and sunset images determined in the indoor/outdoor step. Then we determine the pixels that correspond to sky in the sunrise and sunset images. The location of the sun in the sunrise and sunset images are detected by dividing each into four columns of equal size. Using only the sky pixels in each of these four sections, we determine the mean for each of the sections and compare these four values. If the variance of these 4 values is under a certain threshold, it means that the sky is smooth, and thus the sun is assumed to not be in the image. If either of the sunrise or the sunset images do have variances that are significant, we assume that the sun is present in one of these two images. In this case, we assume that the camera is facing either east or west. Otherwise, it faces north or south. The orientation determination will not work if the sky is occluded in the image. In the east/west option, if the camera faces east, the sun will be detected in the sunrise image. Similarly, if it faces west, the sun will be detected in the sunset image. In the case of north/south cams, we compare the red tones in the left and right columns of the divided images and if the red tones of the image have higher values in the left or right side of the image, we determine that the light source comes from that side. Using this information, if the sun is on the left of the sunrise image, the camera faces south, and if the sun is on the right of the sunrise image, the camera faces north.
The classification system writes out a file which contains the camID and URL information, along with all the properties we just determined. Next, we index the webcam pages on the page words, and the properties by modifying the nutch indexer. We use pieces of the nutch plugin GeoPosition to convert and index latitude and longitude information and add indexed text fields for all of the other attributes. We provide a specialized search UI, based off the original nutch interface, from which the user can search based on keyword, and filter based on several of the webcam features, such as location, indoor/outdoor, and orientation. Queries can be constructed using the various checkboxes or using field syntax.
Misteps and Lessons Learned
The scheduler that takes care of the multithreading of the classification process was an unexpected challenge. We had to make several attempts before we got something working. Through this, we learned a lot about threading, particularly in Java. First, we had set it up such that each cam was allocated a thread, and we had assumed that when the thread sleeps, it would free its resources for another thread to use. However, this is not how it ended working. We had to change it so that each thread was assigned a group of cams, and took care of all the classification for these cams. However, we currently run each of these threads as a separate process, and therefore are limited by the number of processes a single user can start. What we could have done differently is have a higher scheduler (a single process) that spawned each of these classification threads as a thread in its own process space. That way, we would only have 1 process running, which would allow us to classify more cams concurrently.

Another improvement we could have made was in our determination of the cam frequency. Currently, we start with one minute, and then try until we max out at 4 minutes. If we wanted to give the user more specific answers, we could bump up the granularity, at the expense of the process taking longer to classify. Furthermore, we could speed up the process by doing a binary search for the frequency time instead of a sequential search.

Additionally, if we had more time to poll images, we could have done a better job at determining the location of webcams. Currently, we only base it on the IP of the page on which the cam is located. We’ve noticed that this will be incorrect if the cam page is not hosted on a server close to where the cam is located. To improve this, we would have wanted to extract location information from the content of the page itself, and then coalesce this with the information we get from the server information. Also, if we had more time, we could have determined longitude and not just latitude from the sunrise and sunset times, which we determined fairly accurately.

One more thing we would have liked to do is be able to handle Java applet and Javascript pages. This would improve our recall, since currently we are unable to classify these pages as webcam pages.

We also learned how to do many things very well. One of our challenges early on in the classification process was dealing with hostile environment that is the web. The web is a conglomeration of all sorts of heterogeneous data, making it difficult to write a robust application. One of the ways we encountered this was in that some pages that we crawled were actually redirects. However, they weren’t normal redirects, but were actually calling a decode method that did some operations to figure out the actual redirected page. These redirects caused problems for the crawler, the page classifier, the image downloader and clustering. The crawler downloaded and stored the redirecting page and so all of the content requiring tasks were initially performed on the wrong page content. After discovering this we were able to solve the problem in time to handle grabbing images and clustering these cases.

We were also very successful at picking out cam images from pages, combining the information we were able to determine from various properties of the camera. Looking at the pages that we indexed, there are very few false positives. We had a set of samples with 58 ad images and 123 non ad images. With a cross validations of 10 folds, the results are the following:

	Correctly Classified Instances
	169
	93.3702 %

	Incorrectly Classified Instances
	12
	6.6298 %

The classifier was perfect determining non-ads but in some cases, the ads were classified as non-ads. Even though the false positive rate is not small, we will run into polling ad images which will not refresh continuously as webcams, so they will be filtered later on. One advantage of this classifier is that we are not loosing cams.
The rows of the following confusion matrix indicate the classes to which the instances were classified to and the columns indicate the actual correct instance.

	
	Ad
	Non-ad

	Ad
	46
	12

	Non-ad
	0
	123

Our frequency determination was also very successful, for the amount of time we spend polling (the granularity that we set). It is able to classify the cam into 1 minute, 2 minute, or 4 or more minute updates, which we feel is a granularity that would be useful for the users.

We implemented a simple k-means clustering for keywords in documents [Goffinet et al]. The weight for a keyword in a document is:

	[image: image1.png]

	where :

wik = the weight of keyword k in document i
nk = number of documents containing keyword k
tfik = number of occurrences of keyword k in document i

The similarity function between two documents Di and Dj, represented in a space of N keywords by their weighted keyword vectors (wik) and (wjk) is:

	[image: image2.png]Swswz

sim(D,, Dy)

The number of iterations and the number of clusters were 10. We did not have time to label the data and to test the various results when modifying the parameters. If we had more time, it would be interesting to see the results varying the number of clusters, and iterations. The initialization of the documents was selecting random documents. A smarter way of determining the number of iterations would be to stop whenever the variance in the cluster did not change much in comparison to the last iteration.

The image classification thresholds were determined observing the values for images in a training set. A more clever extension to this project would be to substitute these threshold values and feed the features we extract into a classifier.

The orientation detection depends on the sky and the sun. If the image has a building occluding the sky, the classifier will not find the orientation. A possible extension would be the detection of shadows in an image. However, after looking for shadow detection [Rosin et al] papers, it seemed like most papers focus on images under a particular setup, which makes it difficult to use on a diverse set of image.

Quantitative analysis of the performance of the Ad/Non-Ad classifier
After determining a potential webcam page using keyword features, we pull all the images in the webpage and classify them as ad or non-ad. We consider non-ads as images that look like potential webcams.
The final version of the classifier used in CamHunt is a multilayered perceptron with 3 hidden layers. The number of hidden layers was the default value in the software, which is defined as the (number of classes+ the number of features)/2. Here we analyze the performance of other types of classifiers on the same training and testing data. The testing is done with a cross validation of 10 folds. The dataset we use includes 123 non-ad instances (cam images) and 58 ad images collected and labeled manually.

The same training and testing dataset was applied on the following classifiers: Multilayer Perceptron, Naïve Bayes, Complement Naïve Bayes, Decision Stump, Random Tree, and Random Forest using 5 image features: width, height, aspect ratio, entropy of the intensities of the images, and the ratio between the number of used and unused bins in the color histogram of the image. The number of bins used was 40.

The classifiers were picked within a set of options in the Machine Learning package that we used: Weka.

	Classifier
	Correctly Classified Instances (%)
	TP Rate

(ad) (%)
	FP Rate

(ad) (%)
	TP Rate

(non-ad) (%)
	FP Rate

(non-ad) (%)

	Multilayer Perceptron
	93.3702
	79.3
	0
	100.0
	20.7

	Naïve Bayes
	90.0552
	81.0
	0.057
	94.3
	19.0

	Complement Naïve Bayes
	86.1878
	60.3

	0.016
	98.4

	39.7

	Decision stump
	90.0552
	 69.0

	0
	100.0
	3.01

	Random Tree
	92.2652
	 84.5
	0.041
	95.9
	15.5

	Random Forest
	93.9227
	 86.2

	0.024
	 97.6
	13.8

Chart1. The results of the ad/non-ad classifier using different classifiers

The results above show that the multilayer perceptron and the random forest yield the highest precision rates. The true positive rate for ads of the random forest is higher than for the multilayer perceptron. However, we decided to use the multilayer perceptron in our final classification because the false positive rate was 0 compared to 0.024 in the random forest. This means that using the multilayer perceptron, while a number ads can be incorrectly classified as non-ads, we will not loose non-ads by having them being classified as ads as opposed to the case of the random forest.

The other classifiers perform worse than the multilayer perceptron, but the differences are not within a 7.04% range in this experiment, which does not appear to be very significant.

[image: image3]
Figure 1. Percentage of correctly classified instances for different classifiers.

Analysis of different features used in the ad/non-ad classified using a multilayer perceptron
After choosing to use the multilayer perceptron for our classification, we analyzed some combinations of the 5 features that were defined: height, width, and aspect ratio of the image, the ratio of used vs. unused bins in the histogram of the image, and the entropy in the colors of the image.

We can observe in chart 2 that the percentage of correctly classified instances with various combinations of features lies between a range of 9.948%. We expected features like the height and width alone not to be significant in the classification, however, they yielded high precision. We can observe that the width alone achieved a 90% of correctly classified instances. This means that if we wanted a quick classifier, we could input the with and height values and that would be enough and fast as opposed to performing image processing operations that might take longer to process.

While the aspect ratio was expected to be an important feature, the feature alone did not perform as well as most of the other features. As mentioned in the previous analysis, we are aiming initially for a large true positive rate for the non-ad and if possible, a large true positive rate for the non ad case. The combination of all the features yields the best results.

Interestingly, the use of the histogram ratio, width, and height produces the same result in this set. This is because the width and height define the aspect ratio, a feature that can be dropped. Entropy is a measure of the amount of information in this case of the image. In ad images, because ads tend to use solid colors in comparison to natural images where most of the available colors are used, we consider the ratio of used vs unused bins in the histogram. The entropy and histogram ratio features were expected to yield similar results in the classification, which can be observed in the chart and the graph.

Therefore, the use of the histogram ratio, width and height seem to be the best option as features for our classifier.

If we wanted to reduce the amount of processing, we could just use the width and height.

	Features used
	Correctly Classified Instances (%)
	TP Rate (ad) (%)
	FP Rate (ad) (%)
	TP Rate (non-ad) (%)
	FP Rate (non-ad) (%)

	height
	88.9503
	 74.1
	4.1
	95.9
	25.9

	width
	90.0552
	 69.0
	0.0
	100.0
	31.0

	aspect ratio
	85.6354
	 55.2
	0.0
	100.0
	44.8

	Histogram ratio
	83.9779
	51.7
	8.0
	99.2
	48.3

	entropy, aspect ratio
	83.4254
	 58.6
	4.9
	95.1
	41.4

	Histogram ratio, aspect ratio
	90.6077
	79.3
	0.0
	99.2
	27.6

	entropy, width, height
	91.7127
	75.9
	0.8
	99.2
	24.1

	Histogram ratio, width, height
	93.3702
	79.3
	0.0
	100.0
	20.7

	Height, width, aspect ratio, histogram ratio, entropy
	93.3702
	79.3
	0.0
	100.0
	20.7

Chart 2. The results that a cross validation of 10 folds yield with a multilayer perceptron with number of layers equal to (number of features + number of classes)/2.

[image: image4]
Figure 2. Percentage of correctly classified instances using different features.

Conclusion

The process of designing and implementing a webcam search engine was a much more challenging task than we anticipated. Our modular design allowed us to very easily divide the work into three separate sections, but integrating our sections proved to be more difficult than we expected. Each piece of the system works very well on its own, however in piecing them all together our system lost an amount of robustness. We learned a large amount about the process of crawling, dealing with a hostile environment, threading issues and image classification.

 Appendix I- Attribution

Jenny: Ad/Non ad classifier, Indoor/Outdoor classifier, Sunrise/Sunset time determination, Orientation classifier, training set downloader, image training data gathering, UI, k-means, ad/non-ad classifier analysis.

Jon: Frequency, Location (both determining location of webcam and converting the user’s location search string into lat/long), UI, multi-threaded download/image classification scheduler, determining which image on a page is a webcam, gathering ad/non/indoor/outdoor training data, labeling training data, Google maps interface.

Mike: Focused crawler, url classifier and training, index integration, nutch search UI setup and integration.

Appendix II – Other Code

· We used the Google API to get 200 cams for our seed list, using a python script from the book “Dive Into Python”, written by Mark Pilgrim.

· We use the Google Maps API to allow for users to select a lat and long to search on (from our main search page).

· We used Weka, a collection of machine learning algorithms in Java, for the ad classifier and originally intended as an extension for the cam classifier (but we ended up not doing this).

· Nutch and Lucene, which we extended to do our crawl and index.

· Java Advanced Image library, to be able to extract certain properties from images (such as height and width and pixel color data).

· We ping InternetFrog.com to convert from IP address to latitude/longitude.

· We ping a webservice at http://geocoder.us/ to convert from a street address to a latitude/longitude.

· Geoposition plugin for nutch for indexing on latitude and longitude.
Appendix III - References
Andersson, Arne, N. Jesper Larsson and Kurt Swanson. Suffix Tree on Words. Algorithmica, 1999.
Goffinet, Luc and Monique Noirhomme-Fraiture, Automatic Hypertext Link Generation based on Similarity Measures between Documents. Namur, Belgium 1999.

Rosin, Paul and Tim Ellis. Image difference threshold strategies and shadow detection. In Proceedings of the 1995 British conference on Machine vision, p.347-356, July 1995, Birmingham, United Kingdom
Szummer, Martin and Rosalind W. Picard. Indoor-Outdoor Image Classification. IEEE International Workshop on Content-Based Access of Image and Video Databases, CAIVD 42—51. Bombay, India, 1998.

 Correctly Classified instances (%) using different features

0

10

20

30

40

50

60

70

80

90

100

height

width

aspect ratio

Histogram ratio

entropy, aspect ratio

Histogram ratio, aspect ratio

entropy, width, height

Histogram ratio,

width, height

Height, width, aspect ratio,

histogram ratio, entropy

Feature(s)

Percentage of correctly classified instances

 Correctly Classified instances (%) using different classifiers

0

10

20

30

40

50

60

70

80

90

100

Multilayer Perceptron

Naïve Bayes

Complement Naïve Bayes

Decision Stump

Random Tree

Random Forest

Classifier

Percentage of correctly classified instances

