Course Overview

- Systems Foundation: Networking, Synchronization & Monitors
- Datamining
- Cluster Computing
- Crawler Architecture
- Case Studies: Nutch, Google, Altavista
- Information Retrieval
 - Precision vs Recall
 - Inverted Indicies
- P2P
- Security
- Web Services
- Semantic Web
- Advt
- New Stuff

Tentative Schedule

- 11/1 Machine learning & datamining
- 11/3 Text categorization & evaluation methods
- 11/8 Information extraction
- 11/10 KnowItAll
- 11/15 … continued
- 11/17 Clustering & Focused crawling
- 11/22 AJAX - Denise Draper
- 11/24 …
- 11/29 Outbreak
- 12/1 Cryptography / Security
- 12/6 P2P & Advertising
- 12/8 Semantic Web

Today’s Outline

- Overfitting
- Ensembles
 - Learners: The more the merrier
- Co-Training
 - Supervised learning with few labeled training ex
- Clustering
 - No training examples

Bias

- The nice word for prejudice is “bias”.
- What kind of hypotheses will you consider?
 - What is allowable range of functions you use when approximating?
- What kind of hypotheses do you prefer?

Learning = Function Approximation

- E.g., Checkers
 - V: boards -> evaluation
- E.g., Handwriting recognition
 - V: image -> word
- E.g., Mushrooms
 - V: mushroom-attributes -> (E, P)
- OPINE ?
Supervised Learning

- Inductive learning or "Prediction":
 Given examples of a function \((X, F(X)) \)
 Predict function \(F(X) \) for new examples \(X \)

- Classification
 \(F(X) = \) Discrete
- Regression
 \(F(X) = \) Continuous
- Probability estimation
 \(F(X) = \) Probability\((X)\):

<table>
<thead>
<tr>
<th>Task</th>
<th>Performance Measure</th>
<th>Experience</th>
</tr>
</thead>
</table>

(Some) Datamining Issues

- What feedback (experience) is available?
- How to represent this experience?
- How avoid overfitting?

Overfitting

- Hypothesis \(H \) is overfit when \(\exists H' \) and
 \(H \) has smaller error on training examples, but
 \(H \) has bigger error on test examples

- Causes of overfitting
 Noisy data, or
 Training set is too small

- Huge problem in practice
 Take class in ML or datamining...

Ensembles of Classifiers

- Bagging
- Cross-validated committees
- Boosting
- Stacking

Voting

![Diagram of Voting](image)
Ensembles of Classifiers

• Assume
 Errors are independent (suppose 30% error)
 Majority vote
• Probability that majority is wrong...
 = area under binomial distribution

 If individual area is 0.3
 Area under curve for ≥11 wrong is 0.026
 Order of magnitude improvement!

Constructing Ensembles

Cross-validated committees

• Partition examples into \(k \) disjoint equiv classes
• Now create \(k \) training sets
 Each set is union of all equiv classes except one
 So each set has \((k-1)/k \) of the original training data
• Now train a classifier on each set

Ensemble Construction II

Bagging

• Generate \(k \) sets of training examples
• For each set
 Draw \(m \) examples randomly (with replacement)
 From the original set of \(m \) examples
• Each training set corresponds to
 63.2% of original
 (+ duplicates)
• Now train classifier on each set

Ensemble Creation III

Boosting

• Maintain prob distribution over set of training ex
• Create \(k \) sets of training data iteratively:
 • On iteration \(i \)
 Draw \(m \) examples randomly (like bagging)
 But use probability distribution to bias selection
 Train classifier number \(i \) on this training set
 Test partial ensemble (of \(i \) classifiers) on all training exs
 Modify distribution: increase \(P \) of each error ex
 • Create harder and harder learning problems...
 • “Bagging with optimized choice of examples”

Ensemble Creation IV

Stacking

• Train several base learners
• Next train meta-learner
 Learns when base learners are right / wrong
 Now meta learner arbitrates

Train using cross validated committees

 • Meta-L inputs = base learner predictions
 • Training examples = ‘test set’ from cross validation

Co-Training Motivation

• Learning methods need labeled data
 Lots of \(\langle x, f(x) \rangle \) pairs
 Hard to get... (who wants to label data?)
• But unlabeled data is usually plentiful...
 Could we use this instead????
Co-training

Suppose
• Have little labeled data + lots of unlabeled
• Each instance has two parts:
 \[x = [x_1, x_2] \]
 \(x_1, x_2 \) conditionally independent given \(f(x) \)
• Each half can be used to classify instance
 \(\exists f_1, f_2 \) such that
 \[f_1(x_1) \sim f_2(x_2) \sim f(x) \]
• Both \(f_1, f_2 \) are learnable
 \(f_1 \in H_1, f_2 \in H_2, \exists\) learning algorithms \(A_1, A_2 \)

Without Co-training

\[f_1(x_1) \sim f_2(x_2) \sim f(x) \]

A Few Labeled
Instances

\(f_2 \)

Unlabeled Instances

Combine with ensemble?

Observations
• Can apply \(A_1 \) to generate as much training
 data as one wants
 If \(x_1 \) is conditionally independent of \(x_2 / f(x) \),
 then the error in the labels produced by \(A_1 \)
 will look like random noise to \(A_2 \) !!!
• Thus no limit to quality of the hypothesis \(A_2 \)
 can make

Choosing the Training Experience
• Credit assignment problem:
 Direct training examples:
 • E.g. individual checker boards + correct move for each
 • Supervised learning
 Indirect training examples:
 • E.g. complete sequence of moves and final result
 • Reinforcement learning
 • Unlabeled training examples
 • Clustering
• Which examples:
 Random, teacher chooses, learner chooses

It really works!
• Learning to classify web pages as course pages
 \(x_1 = \text{bag of words on a page} \)
 \(x_2 = \text{bag of words from all anchors pointing to a page} \)
• Naïve Bayes classifiers
 12 labeled pages
 1039 unlabeled

Table 3: Error rate in predicting the classifying web pages as course home pages. The top row shows error when training on only the labeled examples. Bottom row shows error when co-training, using both labeled and unlabeled examples.
Clustering Outline

• Motivation
• Document Clustering
• Offline evaluation
• Grouper I
• Grouper II
• Evaluation of deployed systems

Low Quality of Web Searches

• System perspective:
 - small coverage of Web (<16%)
 - dead links and out of date pages
 - limited resources
• IR perspective
 - relevancy of doc ~ similarity to query:
 - very short queries
 - huge database
 - novice users

Document Clustering

• User receives many (200 - 5000) documents from Web search engine
• Group documents in clusters by topic
• Present clusters as interface

Grouper

GROUPER
A document clustering interface for InlySearch

Documents: 208, Clusters: 15, Average Cluster Size: 16

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Size</th>
<th>Shared Phrases and Sample Document Titles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 View Results</td>
<td>17</td>
<td>Monica Lewinsky (20%), Clinton’s scandal (35%), Kenneth Starr Investigation (20%), Hillary Clinton (20%)</td>
</tr>
<tr>
<td>2 View Results</td>
<td>30</td>
<td>China’s position on sanctions (30%), Clinton/Gore (40%), Prohooded Fraction (20%), election of 98</td>
</tr>
<tr>
<td>3 View Results</td>
<td>8</td>
<td>Clinton’s (50%), domestic (30%), special (10%), President (5%), report (15%), legal (5%), Paula (5%)</td>
</tr>
</tbody>
</table>

Want to be more specific?
Use the phrases found to focus your search!

Clinton

www.cs.washington.edu/research/clustering
Desiderata

- Coherent cluster
- Speed
-Browsable clusters
- Naming

Main Questions

- Is document clustering feasible for Web search engines?
- Will the use of phrases help in achieving high quality clusters?
- Can phrase-based clustering be done quickly?

1. Clustering

Group together similar items (words or documents)

Clustering Algorithms

- Hierarchical Agglomerative Clustering \(O(n^2)\)
- Linear-time algorithms
 - K-means (Rocchio, 66)
 - Single-Pass (Hill, 68)
 - Fractionation (Cutting et al., 92)
 - Buckshot (Cutting et al., 92)
Basic Concepts - 1

• Hierarchical vs. Flat

Basic Concepts - 2

• hard clustering: each item in only one cluster
• soft clustering: each item has a probability of membership in each cluster
• disjunctive / overlapping clustering: an item can be in more than one cluster

Basic Concepts - 3

distance / similarity function (for documents)
 dot product of vectors
 number of common terms
 co-citations
 access statistics
 share common phrases

Basic Concepts - 4

• What is "right" number of clusters?
 apriori knowledge
 default value: 5
 clusters up to 20% of collection size
 choose best based on external criteria
 Minimum Description Length
 Global Quality Function
 no good answer

K-means

• Works when we know k, the number of clusters
• Idea:
 Randomly pick k points as the "centroids" of the k clusters
 Loop:
 • ∀ points, add to cluster w/ nearest centroid
 • Recompute the cluster centroids
 • Repeat loop (until no change)

Iterative improvement of the objective function:
Sum of the squared distance from each point to the centroid of its cluster

K-means Example

• For simplicity, 1-dimension objects and k=2.
 Numerical difference is used as the distance
• Objects: 1, 2, 5, 6, 7
• K-means:
 Randomly select 5 and 6 as centroids;
 ⇒ Two clusters (1,2,5) and (6,7); meanC1=8/3, meanC2=6.5
 ⇒ (1,2), (5,6,7); meanC1=1.5, meanC2=6
 ⇒ no change.
 Aggregate dissimilarity
 \((\sum \text{of squares of distance each point of each cluster from its cluster center}) - \text{(intra-cluster distance)}\)
 \(= 0.5^2 + 0.5^2 + 1^2 + 0^2 + 1^2 = 2.5\)

| Slide from Rao Kalakrishnan |
K Means Example (K=2)

- Pick seeds
- Reassign clusters
- Compute centroids
- Reassign clusters
- Compute centroids
- Reassign clusters
- Converged!

Time Complexity

- Assume computing distance between two instances is $O(m)$ where m is the dimensionality of the vectors.
- Reassigning clusters: $O(kn)$ distance computations, or $O(knm)$.
- Computing centroids: Each instance vector gets added once to some centroid: $O(nm)$.
- Assume these two steps are each done once for I iterations: $O(Iknm)$.
- Linear in all relevant factors, assuming a fixed number of iterations, more efficient than $O(n^2)$ HAC (to come next)

Vector Quantization: K-means as Compression

Problems with K-means

- Need to know k in advance
- Could try out several k?

- Cluster tightness increases with increasing k

- Looks for a kink in the tightness vs. k curve
- Tends to go to local minima that are sensitive to the starting centroids
- Try out multiple starting points
- Disjoint and exhaustive
- Doesn’t have a notion of “outliers”

- Outlier problem can be handled by K-medoid or neighborhood-based algorithms
- Assumes clusters are spherical in vector space
- Sensitive to coordinate changes, weighting etc.

Hierarchical Clustering

- Agglomerative

- Bottom-up

 Initialize: each item a cluster
 Iterate: select two most similar clusters
 - merge them
 Halt: when have required # of clusters
Hierarchical Clustering

• Divisive
top-bottom

Initialize:
- all items one cluster
Iterate:
- select a cluster (least coherent)
 - divide it into two clusters
Halt:
 when have required # of clusters

HAC Similarity Measures

• Single link
• Complete link
• Group average
• Ward’s method

Single Link

• cluster similarity = similarity of two
 most similar members

Complete Link

• cluster similarity = similarity of two
 least similar members

Single Link

• $O(n^2)$
• chaining:
 - bottom line:
 simple, fast
 often low quality

Complete Link

• worst case $O(n^3)$
• fast algo requires $O(n^2)$ space
• no chaining
• bottom line:
 typically much faster than $O(n^3)$,
 often good quality
Group Average

- cluster similarity
 = average similarity of all pairs

HAC Often Poor Results - Why?

- Often produces single large cluster
- Work best for:
 - spherical clusters; equal size; few outliers
- Text documents:
 - no model
 - not spherical; not equal size; overlap
- Web:
 - many outliers; lots of noise

Example: Clusters of Varied Sizes

- k-means; complete-link; group-average:

 - single-link: chaining,
 but succeeds on this example

Example - Outliers

- HAC:

Suffix Tree Clustering

(KDD'97; SIGIR'98)

- Most clustering algorithms aren’t \textit{specialized} for text:
 - Model document as \textbf{set} of words
- STC:
 - document = \textbf{sequence} of words

STC Characteristics

- Coherent
 - phrase-based overlapping clusters
- Speed and Scalability
 - linear time; incremental
- Browsable clusters
 - phrase-based
 - simple cluster definition
STC - Central Idea

- Identify **base clusters**
 - a group of documents that share a phrase
 - use a suffix tree
- Merge base clusters as needed

STC - Outline

Three logical steps:
1. "Clean" documents
2. Use a suffix tree to identify **base clusters** - a group of documents that share a phrase
3. Merge base clusters to form clusters

Step 1 - Document “Cleaning”

- Identify sentence boundaries
- Remove
 - HTML tags,
 - JavaScript,
 - Numbers,
 - Punctuation

Suffix Tree
(Weiner, 73; Ukkonen, 95; Gusfield, 97)

Example - suffix tree of the string: (1) "cats eat cheese"

Step 2 - Identify Base Clusters via Suffix Tree

- Build one suffix tree from all sentences of all documents
- Suffix tree node = base cluster
- Score all nodes
- Traverse tree and collect top k (500) base clusters

Example - suffix tree of the strings:
(1) "cats eat cheese",
(2) "mice eat cheese too" and
(3) "cats eat mice too"
Step 3 - Merging Base Clusters

• Motivation: similar documents share multiple phrases
• Merge base clusters based on the overlap of their document sets
• Example (query: "salsa")
 - "tabasco sauce" docs: 3, 4, 5, 6
 - "hot pepper" docs: 1, 3, 5, 6
 - "dance" docs: 1, 2, 7
 - "latin music" docs: 1, 7, 8

Average Precision - WSR-SNIP

- 16% increase over k-means (not stat. sig.)

Average Precision - WSR-DOCS

- 45% increase over k-means (stat. sig.)

Grouper II

- Dynamic Index:
 - Non-merged based clusters
- Multiple interfaces:
 - List, Clusters + Dynamic Index (key phrases)
- Hierarchical:
 - Interactive "Zoom In" feature (similar to Scatter/Gather)

Evaluation - Log Analysis

Mark entries of interest above and select next display below

- Index
- Clusters
- Over each
- List
- Zoom In
- Switch
- All results

[clinton] Not Query
Northern Light
• "Custom Folders"
• 20000 predefined topics in a manually developed hierarchy
• Classify document into topics
• Display "dominant" topics in search results

Summary
• Post-retrieval clustering
to address low precision of Web searches
• STC
 phrase-based; overlapping clusters; fast
• Offline evaluation
 Quality of STC,
 advantages of using phrases vs. n-grams, FS
• Deployed two systems on the Web
 Log analysis: Promising initial results

www.cs.washington.edu/research/clustering