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Text Categorization
(continued)

CSE 454
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Course Overview

Systems Foundation: Networking, Synchronization & Monitors

Datamining

Cluster Computing 

Crawler Architecture

Case Studies: Nutch, Google, Altavista

Information Retrieval
Precision vs Recall
Inverted Indicies

P2P Security
Web Services
Semantic Web

Info 
Extraction Ecommerce

Advt

New
Stuff

?
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Immediate Organization

Tues 11/1
Learning overview
Text categorization (Rocchio, nearest neighbor)

Thurs 11/3
Text categorization (naïve Bayes); evaluation; topics

Tues 11/8
Information extraction (HMMs)

Thurs 11/10
KnowItAll (overview, rule learning, statistical model)

Tues 11/15
KnowItAll (speedup, relational learning, opinion mining 4

Review: Checkers as ML

Task T: 
Playing checkers

Performance Measure P: 
Percent of games won against opponents

Experience E: 
Playing practice games against itself

Target Function
V: board -> R

Representation of approx. of target function

V(b) = a + bx1 + cx2 + dx3 + ex4 + fx5 + gx6
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Approximating the Target Function

Profound Formulation: 
Can express any type of inductive 
learning as approximating a function
E.g., Checkers

V: boards -> evaluation 
E.g., Handwriting recognition

V: image -> word
E.g., Mushrooms

V: mushroom-attributes -> {E, P}
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Supervised Learning

Inductive learning or “Prediction”:
Given examples of a function (X, F(X))
Predict function F(X) for new examples X

Classification  (“Categorization”)
F(X) = Discrete 

Regression
F(X) = Continuous 

Probability estimation
F(X) = Probability(X):
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Illustration of Rocchio Text Categorization
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Illustration of 3 Nearest Neighbor for 
Text
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Learning ~ Prejudice meets Data

The nice word for prejudice is “bias”.
What kind of hypotheses will you consider?

What is allowable range of functions you use when 
approximating?

What kind of hypotheses do you prefer?
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Two Strategies for ML

Restriction bias: use prior knowledge to 
specify a restricted hypothesis space.

Rocchio
Naïve Bayes

Preference bias: use a broad hypothesis 
space, but impose an ordering on the 
hypotheses.

General Bayesian learning
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Rocchio Anomaly   

Prototype models ~ very strong bias
Can’t represent polymorphic categories.
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Bayesian Methods

Learning and classification methods based 
on probability theory.

Bayes theorem plays a critical role in 
probabilistic learning and classification.
Uses prior probability of each category given 
no information about an item.

Categorization produces a posterior
probability distribution over the possible 
categories given a description of an item.
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Axioms of Probability Theory

All probabilities between 0 and 1

True proposition has probability 1, false has 
probability 0. 

P(true) = 1        P(false) = 0.
The probability of  disjunction is:
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Probability: Simple & Logical

15

Conditional Probability 

P(A | B) is the probability of A given B
Assumes: 

B is all and only information known.
Defined by:
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Independence

A and B are independent iff:

Therefore, if A and B are independent:
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These two constraints are logically equivalent
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Bayes Theorem

Simple proof from definition of conditional probability:
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QED:

(Def. cond. prob.)

(Def. cond. prob.)
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(Mult both sides of 2 by P(H).)

(Substitute 3 in 1.)
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Bayesian Categorization

Let set of categories be {c1, c2,…cn}
Let E be description of an instance.
Determine category of E by determining for each ci

P(E) can be determined since categories are 
complete and disjoint.
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Bayesian Categorization (cont.)

Need to know:
Priors: P(ci) 
Conditionals: P(E | ci)

P(ci) are easily estimated from data. 
If ni of the examples in D are in ci,then P(ci) =  ni / |D|

Assume instance is a conjunction of binary features:

Too many possible instances (exponential in m) to 
estimate all P(E | ci)

meeeE ∧∧∧= L21
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Naïve Bayesian Motivation

Too many possible instances (exponential in m) to 
estimate all P(E | ci)

If we assume features of an instance are independent 
given the category (ci) (conditionally independent).

Therefore, we then only need to know  P(ej | ci) for 
each feature and category.
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Naïve Bayesian Categorization

If we assume features of an instance are 
independent given the category (ci) 
(conditionally independent).

Therefore, we then only need to know     
P(ej | ci) for each feature and category.
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Naïve Bayes Example

C = {allergy, cold, well}
e1 = sneeze; e2 = cough; e3 = fever
E = {sneeze, cough, ¬fever}

0.40.70.01P(fever|ci)
0.70.80.1P(cough|ci)
0.90.90.1P(sneeze|ci)
0.050.050.9P(ci)

AllergyColdWellProb
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Naïve Bayes Example (cont.)

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy
P(E) = 0.089 + 0.01 + 0.019 = 0.0379
P(well | E) = 0.23
P(cold | E) = 0.26
P(allergy | E) = 0.50

0.40.70.01P(fever | ci)

0.70.80.1P(cough | ci)

0.90.90.1P(sneeze | ci)

0.050.050.9P(ci)

AllergyColdWellProbability

E={sneeze, cough, ¬fever}

Evidence is Easy?

Or…. Are their problems?

#      + #    
#P(ci | E) = 

Assume evidence is w
ords in document
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Smooth with a Prior

p = prior probability
m = weight

Note that if m = 10, it means “I’ve seen 10 samples 
that make me believe  P(Xi | S) = p”

Hence, m is referred to as the
equivalent sample size

#      + #    
# + mp

+ m
P(ci | E) = 
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Estimating Probabilities

Normally, probabilities are estimated based on 
observed frequencies in the training data.
If D contains ni examples in category ci, and nij of 
these ni examples contains feature ej, then:

However, estimating such probabilities from small 
training sets is error-prone.
If due only to chance, a rare feature, ek, is always 
false in the training data, ∀ci :P(ek | ci) = 0.
If ek then occurs in a test example, E, the result is 
that ∀ci: P(E | ci) = 0 and ∀ci: P(ci | E) = 0
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Smoothing

To account for estimation from small samples, 
probability estimates are adjusted or smoothed.
Laplace smoothing using an m-estimate assumes that 
each feature is given a prior probability, p, that is 
assumed to have been previously observed in a 
“virtual” sample of size m.

For binary features, p is simply assumed to be 0.5.
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Naïve Bayes for Text

Modeled as generating a bag of words for a 
document in a given category by repeatedly 
sampling with replacement from a 
vocabulary V = {w1, w2,…wm} based on the 
probabilities P(wj | ci).
Smooth probability estimates with Laplace         
m-estimates assuming a uniform distribution 
over all words (p = 1/|V|) and m = |V|

Equivalent to a virtual sample of seeing each word in 
each category exactly once.
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Text Naïve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D
For each category ci ∈ C

Let Di be the subset of documents in D in category ci
P(ci) = |Di| / |D|
Let Ti be the concatenation of all the documents in Di
Let ni be the total number of word occurrences in Ti
For each word wj∈ V

Let nij be the number of occurrences of wj in Ti
Let P(wi | ci) = (nij + 1) / (ni + |V|)  
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Text Naïve Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

where ai is the word occurring the ith position in X
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Naïve Bayes Time Complexity

Training Time:  O(|D|Ld + |C||V|))           
where Ld is the average length of a document in D.

Assumes V and all Di , ni, and nij pre-computed in 
O(|D|Ld) time during one pass through all of the data.
Generally just O(|D|Ld) since usually |C||V| < |D|Ld

Test Time: O(|C| Lt)                                
where Lt  is the average length of a test document.

Very efficient overall, linearly proportional to the 
time needed to just read in all the data.
Similar to Rocchio time complexity.
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Easy to Implement

But…

If you do… it probably won’t work…

Probabilities: Important Detail!

Any more potential problems here?

P(spam | E1 … En) =  Π P(spam | Ei)i

We are multiplying lots of small numbers 
Danger of underflow!

0.557 = 7 E -18       

Solution? Use logs and add!
p1 * p2 = e log(p1)+log(p2)

Always keep in log form 34

Underflow Prevention

Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow.
Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs 
of probabilities rather than multiplying 
probabilities.
Class with highest final un-normalized log 
probability score is still the most probable.
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Naïve Bayes Posterior Probabilities

Classification results of naïve Bayes 
I.e. the class with maximum posterior probability…
Usually fairly accurate (?!?!?)

However, due to the inadequacy of the 
conditional independence assumption…

Actual posterior-probability estimates not accurate.
Output probabilities generally very close to 0 or 1.
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Evaluating Categorization

Evaluation must be done on test data that are 
independent of the training data 

(usually a disjoint set of instances).
Classification accuracy: c/n where 

n is the total number of test instances, 
c is the number of correctly classified test instances.

Results can vary based on sampling error due to 
different training and test sets.

Bummer… what should we do?
Average results over multiple training and test sets 
(splits of the overall data) for the best results.

Bummer… that means we need lots of labeled data…
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N-Fold Cross-Validation

Ideally: test, training sets are independent on each trial.
But this would require too much labeled data.

Cool idea:
Partition data into N equal-sized disjoint segments.
Run N trials, each time hold back a different segment for testing 
Train on the remaining N−1 segments.

This way, at least test-sets are independent.
Report average classification accuracy over the N trials.
Typically, N = 10.

Also nice to report standard 

deviation of averages
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Cross validation

Partition examples into k disjoint equiv classes
Now create k training sets

Each set is union of all equiv classes except one
So each set has (k-1)/k of the original training data

Train            

T
es

t
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Cross Validation

Partition examples into k disjoint equiv classes
Now create k training sets

Each set is union of all equiv classes except one
So each set has (k-1)/k of the original training data

T
es

t
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Cross Validation

Partition examples into k disjoint equiv classes
Now create k training sets

Each set is union of all equiv classes except one
So each set has (k-1)/k of the original training data

T
es

t
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Learning Curves

In practice, labeled data is usually rare and 
expensive.
Would like to know how performance 
varies with the number of training instances.
Learning curves plot classification accuracy 
on independent test data (Y axis) versus 
number of training examples (X axis).
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N-Fold Learning Curves

Want learning curves averaged over multiple 
trials.
Use N-fold cross validation to generate N full 
training and test sets.

For each trial, 
train on increasing fractions of the training set
measure accuracy on the test data 

for each point on the desired learning curve.
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Sample Learning Curve
(Yahoo Science Data)


