Text Categorization	
(continued)	
CSE 454	

Immediate Organization

- Tues 11/1
- Learning overview
- Text categorization (Rocchio, nearest neighbor)
- Thurs 11/3
- Text categorization (naïve Bayes); evaluation; topics
- Tues 11/8
- Information extraction (HMMs)
- Thurs 11/10
- KnowItAll (overview, rule learning, statistical model)
- Tues 11/15
- KnowItAll (speedup, relational learning, opinion mining

Approximating the Target Function

- Profound Formulation:

Can express any type of inductive learning as approximating a function

- E.g., Checkers
- V: boards -> evaluation
- E.g., Handwriting recognition
- V: image -> word
- E.g., Mushrooms
- V: mushroom-attributes -> $\{\mathrm{E}, \mathrm{P}\}$

Course Overview

Systems Foundation: Networking, Synchronization \& Monitors

Review: Checkers as ML

- Task T:
- Playing checkers
- Performance Measure P:
- Percent of games won against opponents
- Experience E:
- Playing practice games against itself
- Target Function
- V: board -> R
- Representation of approx. of target function

$$
\hat{V}(b)=a+b x 1+c x 2+d x 3+e x 4+f x 5+g x 6
$$

Supervised Learning

- Inductive learning or "Prediction":
- Given examples of a function ($X, F(X)$)
- Predict function $F(X)$ for new examples X
- Classification ("Categorization")
- $F(X)=$ Discrete
- Regression
- $F(X)=$ Continuous
- Probability estimation
- $F(X)=\operatorname{Probability}(X):$

Learning ~ Prejudice meets Data

- The nice word for prejudice is "bias".
- What kind of hypotheses will you consider?
- What is allowable range of functions you use when approximating?
- What kind of hypotheses do you prefer?

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
- Rocchio
- Naïve Bayes
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
- General Bayesian learning

Bayesian Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

Axioms of Probability Theory

- All probabilities between 0 and 1

$$
0 \leq P(A) \leq 1
$$

- True proposition has probability 1 , false has probability 0.

$$
P(\text { true })=1 \quad \mathrm{P}(\text { false })=0
$$

- The probability of disjunction is:

$$
P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

Conditional Probability

- $\mathrm{P}(A \mid B)$ is the probability of A given B
- Assumes:
- B is all and only information known.
- Defined by:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}
$$

Bayes Theorem

$P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
Simple proof from definition of conditional probability:

$$
\begin{array}{ll}
P(H \mid E)=\frac{P(H \wedge E)}{P(E)} & \text { (Def. cond. prob.) } \\
P(E \mid H)=\frac{P(H \wedge E)}{P(H)} & \text { (Def. cond. prob.) } \\
P(H \wedge E)=P(E \mid H) P(H) & \text { (Mult both sides of } 2 \text { by } \mathrm{P}(\mathrm{H}) .)
\end{array}
$$

QED: $P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
(Substitute 3 in 1.)

Bayes Theorem
$P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
Simple proof from definition of conditional probability:
$P(H \mid E)=\frac{P(H \wedge E)}{P(E)}$
$P(E \mid H)=\frac{P(H \wedge E)}{P(H)}$
$P(H \wedge E)=P(E \mid H) P(H)$
(Def. cond. prob.)
(Def. cond. prob.)
QED: $P(H \mid E)=\frac{P(E \mid H) P(H)}{P(E)}$
(Substitute 3 in 1.)

Probability: Simple \& Logical
The definitions imply that certain logically related events must have related probabilities
E.g. $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Independence

- A and B are independent iff:
$P(A \mid B)=P(A) \quad$ These two constraints are logically equivalent $P(B \mid A)=P(B)$
- Therefore, if A and B are independent:
$P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A)$
$P(A \wedge B)=P(A) P(B)$

Bayesian Categorization

- Let set of categories be $\left\{c_{1}, c_{2}, \ldots c_{n}\right\}$
- Let E be description of an instance.
- Determine category of E by determining for each c_{i} $P\left(c_{i} \mid E\right)=\frac{P\left(c_{i}\right) P\left(E \mid c_{i}\right)}{P(E)}$
- $\mathrm{P}(E)$ can be determined since categories are complete and disjoint.
$\sum_{i=1}^{n} P\left(c_{i} \mid E\right)=\sum_{i=1}^{n} \frac{P\left(c_{i}\right) P\left(E \mid c_{i}\right)}{P(E)}=1$
$P(E)=\sum_{i=1}^{n} P\left(c_{i}\right) P\left(E \mid c_{i}\right)$

Bayesian Categorization (cont.)

- Need to know:
- Priors: $\mathrm{P}\left(c_{i}\right)$
- Conditionals: $\mathrm{P}\left(E \mid c_{i}\right)$
- $\mathrm{P}\left(c_{i}\right)$ are easily estimated from data.
- If n_{i} of the examples in D are in c_{i}, then $\mathrm{P}\left(c_{i}\right)=n_{i} /|D|$
- Assume instance is a conjunction of binary features:

$$
E=e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m}
$$

- Too many possible instances (exponential in m) to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$

Naïve Bayesian Motivation

- Too many possible instances (exponential in m) to estimate all $\mathrm{P}\left(E \mid c_{i}\right)$
- If we assume features of an instance are independent given the category $\left(c_{i}\right)$ (conditionally independent).

$$
P\left(E \mid c_{i}\right)=P\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m} \mid c_{i}\right)=\prod_{j=1}^{m} P\left(e_{j} \mid c_{i}\right)
$$

- Therefore, we then only need to know $\mathrm{P}\left(e_{j} \mid c_{i}\right)$ for each feature and category.

Naïve Bayesian Categorization

- If we assume features of an instance are independent given the category $\left(c_{i}\right)$ (conditionally independent).
$P\left(E \mid c_{i}\right)=P\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{m} \mid c_{i}\right)=\prod_{j=1}^{m} P\left(e_{j} \mid c_{i}\right)$
- Therefore, we then only need to know $\mathrm{P}\left(e_{j} \mid c_{i}\right)$ for each feature and category.

Naïve Bayes Example (cont.)

Probability	Well	Cold	Allergy
$\mathrm{P}\left(c_{i}\right)$	0.9	0.05	0.05
$\mathrm{P}\left(\right.$ sneeze $\left.\mid c_{i}\right)$	0.1	0.9	0.9
$\mathrm{P}\left(\right.$ cough $\left.\mid c_{i}\right)$	0.1	0.8	0.7
$\mathrm{P}\left(\right.$ fever $\left.\mid c_{i}\right)$	0.01	0.7	0.4

$\mathrm{P}($ well $\mid \mathrm{E})=(0.9)(0.1)(0.1)(0.99) / \mathrm{P}(\mathrm{E})=0.0089 / \mathrm{P}(\mathrm{E})$
$\mathrm{P}($ cold $\mid \mathrm{E})=(0.05)(0.9)(0.8)(0.3) / \mathrm{P}(\mathrm{E})=0.01 / \mathrm{P}(\mathrm{E})$
P (allergy $\mid \mathrm{E})=(0.05)(0.9)(0.7)(0.6) / \mathrm{P}(\mathrm{E})=0.019 / \mathrm{P}(\mathrm{E})$
Most probable category: allergy
$\mathrm{P}(\mathrm{E})=0.089+0.01+0.019=0.0379$
$\mathrm{P}($ well $\mid \mathrm{E})=0.23$
$\mathrm{P}($ cold $\mid E)=0.26$
$\mathrm{P}($ allerg $\mid \mathrm{E})=0.50$
$\mathrm{E}=\{$ sneeze, cough, \neg fever $\}$

$$
\begin{array}{r}
\text { Smooth with a Prio } \\
\mathrm{P}\left(\mathrm{c}_{\mathrm{i}} \mid \mathrm{E}\right)=\frac{\# \text { 国 }+m p}{\# \text { 国 }+\#+m}
\end{array}
$$

p = prior probability
$\mathrm{m}=$ weight
Note that if $m=10$, it means "I've seen 10 samples that make me believe $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{S}\right)=p^{\prime \prime}$
Hence, m is referred to as the equivalent sample size

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If D contains n_{i} examples in category c_{i}, and $n_{i j}$ of these n_{i} examples contains feature e_{j}, then:

$$
P\left(e_{j} \mid c_{i}\right)=\frac{n_{i j}}{n_{i}}
$$

- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, e_{k}, is always false in the training data, $\forall c_{i}: \mathrm{P}\left(e_{k} \mid c_{i}\right)=0$.
- If e_{k} then occurs in a test example, E, the result is that $\forall c_{i}: \mathrm{P}\left(E \mid c_{i}\right)=0$ and $\forall c_{i}: \mathrm{P}\left(c_{i} \mid E\right)=0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an m-estimate assumes that each feature is given a prior probability, p, that is assumed to have been previously observed in a "virtual" sample of size m.

$$
P\left(e_{j} \mid c_{i}\right)=\frac{n_{i j}+m p}{n_{i}+m}=\left(\mathrm{n}_{\mathrm{ij}}+1\right) /\left(\mathrm{n}_{\mathrm{i}}+2\right)
$$

- For binary features, p is simply assumed to be 0.5.
Smoothing

Text Naïve Bayes Algorithm

 (Train)Let V be the vocabulary of all words in the documents in D For each category $c_{i} \in C$

Let D_{i} be the subset of documents in D in category c_{i} $\mathrm{P}\left(c_{i}\right)=\left|D_{i}\right| /|D|$
Let T_{i} be the concatenation of all the documents in D_{i}
Let n_{i} be the total number of word occurrences in T_{i}
For each word $w_{j} \in V$
Let $n_{i j}$ be the number of occurrences of w_{j} in T_{i} Let $\mathrm{P}\left(w_{i} \mid c_{i}\right)=\left(n_{i j}+1\right) /\left(n_{i}+|V|\right)$
Text Naïve Bayes Algorithm
(Train)
Let V be the vocabulary of all words in the documents in D
For each category $c_{i} \in C$
Let D_{i} be the subset of documents in D in category c_{i}
P $\left(c_{i}\right)=\left|D_{i}\right||D|$
Let T_{i} be the concatenation of all the documents in D_{i}
Let n_{i} be the total number of word occurrences in T_{i}
For each word $w_{j} \in V$
Let $n_{i j}$ be the number of occurrences of w_{j} in T_{i}
Let $\mathrm{P}\left(w_{i} \mid c_{i}\right)=\left(n_{i j}+1\right) /\left(n_{i}+|V|\right)$

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary $V=\left\{w_{1}, w_{2}, \ldots w_{\mathrm{m}}\right\}$ based on the probabilities $\mathrm{P}\left(w_{j} \mid c_{i}\right)$.
- Smooth probability estimates with Laplace m-estimates assuming a uniform distribution over all words $(p=1 /|V|)$ and $m=|V|$
- Equivalent to a virtual sample of seeing each word in each category exactly once.

- But...
- If you do... it probably won't work...

Probabilities: Important Detail!

- $\mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{1} \ldots \mathrm{E}_{\mathrm{n}}\right)=\prod_{\mathrm{i}} \mathrm{P}\left(\right.$ spam $\left.\mid \mathrm{E}_{\mathrm{i}}\right)$

Any more potential problems here?

- We are multiplying lots of small numbers Danger of underflow!
- $0.5^{57}=7 \mathrm{E}-18$
- Solution? Use logs and add!
- $\mathrm{p}_{1} * \mathrm{p}_{2}=\mathrm{e}^{\log (\mathrm{p} 1)^{2}+\log (\mathrm{p} 2)}$
- Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since $\log (x y)=\log (x)+\log (y)$, it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
- I.e. the class with maximum posterior probability...
- Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
- Actual posterior-probability estimates not accurate.
- Output probabilities generally very close to 0 or 1 .

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- Classification accuracy: c/n where
- n is the total number of test instances,
- c is the number of correctly classified test instances.
- Results can vary based on sampling error due to different training and test sets.
- Bummer... what should we do?
- Average results over multiple training and test sets (splits of the overall data) for the best results.
- Bummer... that means we need lots of labeled data...

N-Fold Cross-Validation

Cross validation

- Ideally: test, training sets are independent on each trial.
- But this would require too much labeled data.
- Cool idea:
- Partition data into N equal-sized disjoint segments.
- Run N trials, each time hold back a different segment for testing
- Train on the remaining $N-1$ segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the N trials.
- Typically, $N=10$.

- Partition examples into k disjoint equiv classes
- Now create k training sets
- Each set is union of all equiv classes except one
- So each set has (k-1)/k of the original training data

Cross Validation

Partition examples into k disjoint equiv classes
Now create k training sets

- Each set is union of all equiv classes except one
- So each set has (k-1)/k of the original training data

Cross Validation

- Partition examples into k disjoint equiv classes
- Now create k training sets
- Each set is union of all equiv classes except one
- So each set has (k-1)/k of the original training data

Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- Learning curves plot classification accuracy on independent test data (Y axis) versus number of training examples (X axis).

N-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use N-fold cross validation to generate N full training and test sets.
- For each trial,
- train on increasing fractions of the training set
- measure accuracy on the test data
- for each point on the desired learning curve.

