

Immediate Organization

- Tues 11/1
 - Learning overview
 - Text categorization (Rocchio, nearest neighbor)
- Thurs 11/3
 - Text categorization (naïve Bayes); evaluation; topics
- Tues 11/8
 - Information extraction (HMMs)
- Thurs 11/10
- KnowItAll (overview, rule learning, statistical model)
- Tues 11/15
 - KnowItAll (speedup, relational learning, opinion mining

 $\hat{V}(b) = a + bx1 + cx2 + dx3 + ex4 + fx5 + gx6$

Approximating the Target Function

- Profound Formulation:
 Can express any type of inductive learning as approximating a function
- E.g., Checkers
 - V: boards -> evaluation
- E.g., Handwriting recognition
 V: image -> word
- E.g., Mushrooms
 - V: mushroom-attributes -> {E, P}

Learning ~ Prejudice meets Data

- The nice word for prejudice is "bias".
- What kind of hypotheses will you consider?
 - What is allowable *range* of functions you use when approximating?
- What kind of hypotheses do you prefer?

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 - Rocchio
 - Naïve Bayes
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
 - General Bayesian learning

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
 - Uses *prior* probability of each category given no information about an item.
- Categorization produces a *posterior* probability distribution over the possible categories given a description of an item.

10

Naïve Bayesian Motivation

- Too many possible instances (exponential in *m*) to estimate all P(*E* | *c_i*)
- If we assume features of an instance are independent given the category (c_i) (conditionally independent).

$$P(E \mid c_i) = P(e_1 \land e_2 \land \dots \land e_m \mid c_i) = \prod_{j=1}^{n} P(e_j \mid c_j)$$

20

• Therefore, we then only need to know $P(e_j | c_i)$ for each feature and category.

19

Smooth with a Prior

$$P(c_i | E) = \frac{\# \square + mp}{\# \square + \# \oslash + m}$$

$$p = \text{prior probability}$$

$$m = \text{weight}$$
Note that if $m = 10$, it means "I've seen 10 samples that make me believe $P(X_i | S) = p$ "
Hence, m is referred to as the equivalent sample size

that $\forall c_i$: $P(E \mid c_i) = 0$ and $\forall c_i$: $P(c_i \mid E) = 0$

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or *smoothed*.
- Laplace smoothing using an *m*-estimate assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.

$$P(e_{j} | c_{i}) = \frac{n_{ij} + mp}{n_{i} + m} = (n_{ij} + 1) / (n_{i} + 2)$$

• For binary features, *p* is simply assumed to be 0.5.

Text Naïve Bayes Algorithm (Train)

Let *V* be the vocabulary of all words in the documents in *D* For each category $c_i \in C$ Let D_i be the subset of documents in *D* in category c_i $P(c_i) = |D_i| / |D|$ Let T_i be the concatenation of all the documents in D_i Let n_i be the total number of word occurrences in T_i For each word $w_j \in V$ Let n_{ij} be the number of occurrences of w_j in T_i Let $P(w_i | c_i) = (n_{ij} + 1) / (n_i + |V|)$

29

- Training Time: $O(|D|L_d + |C||V|))$ where L_d is the average length of a document in D.
 - Assumes V and all D_i, n_i, and n_{ij} pre-computed in O(|D|L_d) time during one pass through all of the data.
 - Generally just $O(|D|L_d)$ since usually $|C||V| < |D|L_d$
- Test Time: $O(/C/L_t)$ where L_t is the average length of a test document.
- Very efficient overall, linearly proportional to the time needed to just read in all the data.
- Similar to Rocchio time complexity.

Easy to Implement

- But...
- If you do... it probably won't work...

- Solution? Use logs and add!
 - $p_1 * p_2 = e^{\log(p_1) + \log(p_2)}$
 - Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability...
 - Usually fairly accurate (?!?!?)
- However, due to the inadequacy of the conditional independence assumption...
 - Actual posterior-probability estimates *not* accurate.
 - Output probabilities generally very close to 0 or 1.

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- *Classification accuracy: c/n* where
 n is the *total* number of test instances,
 - *c* is the number of *correctly classified* test instances.
- Results can vary based on sampling error due to different training and test sets.
 Bummer... what should we do?
- Average results over multiple training and test sets (splits of the overall data) for the best results.
 - Bummer... that means we need *lots* of labeled data...

32

34

41

Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- *Learning curves* plot classification accuracy on independent test data (*Y* axis) versus number of training examples (*X* axis).

N-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use *N*-fold cross validation to generate *N* full training and test sets.
- For each trial,
 - train on increasing fractions of the training set
 - measure accuracy on the test data
 - for each point on the desired learning curve.

