Text Categorization
(continued)
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Immediate Organization

= Tues 11/1

= | earning overview

= Text categorization (Rocchio, nearest neighbor)
= Thurs 11/3

= Text categorization (naive Bayes); evaluation; topics
= Tues 11/8

= Information extraction (HMMs)
= Thurs 11/10

= KnowltAll (overview, rule learning, statistical model)
= Tues 11/15

= KnowltAll (speedup, relational learning, opinion mining

Review: Checkers as ML

= Task T:
= Playing checkers
= Performance Measure P:
= Percent of games won against opponents
= Experience E:
= Playing practice games against itself
= Target Function
= V:board-> R
= Representation of approx. of target function

\7(b) =a+ bxl +cx2 + dx3 + ex4 + x5 + gx6

Approximating the Target Function

= Profound Formulation:

Can express any type of inductive
learning as approximating a function
= E.g., Checkers
= V: boards -> evaluation
= E.g., Handwriting recognition
= V: image -> word
= E.g., Mushrooms
= V: mushroom-attributes -> {E, P}

Supervised Learning

= Inductive learning or “Prediction”:
= Given examples of a function (X, F(X))
= Predict function F(X) for new examples X

= Classification (“Categorization”)
= F(X) = Discrete

= Regression
= F(X) = Continuous

= Probability estimation
= F(X) = Probability(X):




Illustration of Rocchio Text Categorization

[llustration of 3 Nearest Neighbor for

ot
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Learning ~ Prejudice meets Data

= The nice word for prejudice is “bias”.
=\What kind of hypotheses will you consider?

= What is allowable range of functions you use when
approximating?

=\What kind of hypotheses do you prefer?

Two Strategies for ML

= Restriction bias: use prior knowledge to
specify a restricted hypothesis space.
= Rocchio
= Naive Bayes
= Preference bias: use a broad hypothesis
space, but impose an ordering on the
hypotheses.
= General Bayesian learning

Rocchio Anomaly

= Prototype models ~ very strong bias
= Can’t represent polymorphic categories.

Bayesian Methods

= Learning and classification methods based
on probability theory.
= Bayes theorem plays a critical role in
probabilistic learning and classification.
= Uses prior probability of each category given
no information about an item.
= Categorization produces a posterior
probability distribution over the possible
categories given a description of an item.




Axioms of Probability Theory

= All probabilities between 0 and 1
0<P(A)<1
= True proposition has probability 1, false has
probability 0.
P(true) =1 P(false) = 0.
= The probability of disjunction is:
P(Av B)=P(A)+P(B)-P(AAB)

JGW

Probability: Simple & Logical

The definitions imply that certain logically related events must have related
probabilities

E.g. P(AvB) = P(A) + P(B) - P(A1B)
AnB

True

de Finetti (1931): an agent who bets according to probabilities that viclate
these axioms can be forced to bet so as to lose money regardless of outcome.

Conditional Probability

= P(A | B) is the probability of A given B
= Assumes:

= B is all and only information known.
= Defined by:

P(AAB)
P(B)

JGW

P(AIB)=

Independence

= A and B are independent iff:
P(A|B)=P(A)
P(B|A)=P(B)
= Therefore, if A and B are independent:

These two constraints are logically equivalent

P(AAB) _
P(B)

P(AAB)=P(A)P(B)

P(A|B)=

P(A)

Bayes Theorem

P(E[H)P(H)

P(H|E)= bE)

Simple proof from definition of conditional probability:

P(H|E)= % (Def. cond. prob.)
P(E[H)= % (Def. cond. prob.)

P(HAE)=P(E|H)P(H) (Multboth sides of 2 by P(H).)

P(EIH)P(H)

QED: P(H |E) = 15

(Substitute 3in 1.)

Bayesian Categorization

= Let set of categories be {c,, C,,...C,}
= Let E be description of an instance.
= Determine category of E by determining for each c;
P(c)P(E|c)
P(E)
= P(E) can be determined since categories are
complete and disjoint.

; _y PE)P(E|c) _
;P(C.IE)—IZ:; PE) =1

P(|E)=

P(E)=3P)P(EIC)




Bayesian Categorization (cont.)

= Need to know:

= Priors: P(c;)

= Conditionals: P(E | ¢;)

P(c;) are easily estimated from data.

= |If n; of the examples in D are in c; then P(c;) = n;/ |D|

= Assume instance is a conjunction of binary features:

E=e re,A--nE,
= Too many possible instances (exponential in m) to
estimate all P(E | ¢;)

Naive Bayesian Motivation

= Too many possible instances (exponential in m) to
estimate all P(E | ¢;)

= |f we assume features of an instance are independent
given the category (c;) (conditionally independent).

P(Elc))=P(e,ne, Avo-ne, |Ci)=HP(ej lc)

!

= Therefore, we then only need to know P(g;| ¢;) for
each feature and category.

Naive Bayesian Categorization

If we assume features of an instance are
independent given the category (c;)
(conditionally independent).

P(Elc))=P(e,ne, Aeo- e, ICi)=HP(ej lc;)
j-

Therefore, we then only need to know
P(g;| c;) for each feature and category.

Naive Bayes Example

= C = {allergy, cold, well}
= g, = sneeze; e, = cough; e, = fever
= E = {sneeze, cough, —fever}

Prob Well | Cold Allergy
P(c) 0.9 0.05| 0.5
P(sneeze|c;) 0.1 0.9 0.9
P(coughic;) 0.1 0.8 0.7
P(fever|c;) 0.01 0.7 0.4

Naive Bayes Example (cont.)

Probability Well Cold Allergy

P(c) 0.9 0.05 0.05

P(sneeze | c)) 0.1 0.9 0.9 E={sneeze, cough, —fever}
P(cough | ¢;) 0.1 0.8 0.7

P(fever | c;) 0.01 0.7 0.4

P(well | E) = (0.9)(0.1)(0.1)(0.99)/P(E)=0.0089/P(E)
P(cold | E) = (0.05)(0.9)(0.8)(0.3)/P(E)=0.01/P(E)
P(allergy | E) = (0.05)(0.9)(0.7)(0.6)/P(E)=0.019/P(E)

Most probable category: allergy

P(E) = 0.089 + 0.01 + 0.019 = 0.0379
P(well |[E) =0.23

P(cold |[E) =0.26

P(allergy | E) = 0.50

Evidence is Easy?

#HE

P |E)= — " —
#tE+# &

=Qr.... Are their problems?
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Smooth with a Prior

#E1 + mp

PCIB = T mrs o+ m

p = prior probability
m = weight

Note that if m = 10, it means “I’ve seen 10 samples
that make me believe P(X;|S) =p”

Hence, m is referred to as the
equivalent sample size

Estimating Probabilities

= Normally, probabilities are estimated based on
observed frequencies in the training data.
= If D contains n; examples in category c;, and n;; of
these n; examples contains feature g then:
n;
P(e;lc)=—"
n;
= However, estimating such probabilities from small
training sets is error-prone.
= If due only to chance, a rare feature, e,, is always
false in the training data, vc; :P(e, | ¢;) = 0.
= If e, then occurs in a test example, E, the result is
that Vc;: P(E | ¢;) = 0and Vi P(¢;|E) =0

Smoothing

= To account for estimation from small samples,
probability estimates are adjusted or smoothed.

= Laplace smoothing using an m-estimate assumes that
each feature is given a prior probability, p, that is
assumed to have been previously observed in a
“virtual” sample of size m.

P, |c,) =P

=(n+ 1/ (n+2)
n +m

= For binary features, p is simply assumed to be 0.5.

Naive Bayes for Text

= Modeled as generating a bag of words for a
document in a given category by repeatedly
sampling with replacement from a
vocabulary V = {w,, w,,...w,} based on the
probabilities P(w; | ¢).

= Smooth probability estimates with Laplace
m-estimates assuming a uniform distribution
over all words (p = 1/|V]) and m = |V|

= Equivalent to a virtual sample of seeing each word in
each category exactly once.

Text Nalve Bayes Algorithm
(Train)

Let V be the vocabulary of all words in the documents in D

For each category ¢; € C
Let D; be the subset of documents in D in category c;
P(c) = IDj| /D]
Let T; be the concatenation of all the documents in D;
Let n; be the total number of word occurrences in T;
For each word w; e V
Let n;; be the number of occurrences of w;in T;
Let P(w;| ¢) = (nj+ 1) / (n; + |V])

Text Naive Bayes Algorithm
(Test)

Given a test document X
Let n be the number of word occurrences in X
Return the category:

n

argmax P(c,)] [ P(a, | )

i=1
where g; is the word occurring the ith position in X




Naive Bayes Time Complexity

= Training Time: O(|D|L, + |C||V]))
where L is the average length of a document in D.

= Assumes Vand all D;, nj, and n;; pre-computed in
O(|D|Ly) time during one pass through all of the data.

= Generally just O(|D|L) since usually |C||V| < |D|L4
= Test Time: O(|C| L)
where L, is the average length of a test document.

= Very efficient overall, linearly proportional to the
time needed to just read in all the data.

= Similar to Rocchio time complexity.

Easy to Implement

= But...

= If you do... it probably won’t work...

Probabilities: Important Detail!

= P(spam | E; ... E,) = H P(spam | E})
Any more potential problems here?

= We are multiplying lots of small numbers
Danger of underflow!
= 0.55=7E-18

= Solution? Use logs and add!
“p,*p,=e log(p1)+log(p2)
= Always keep in log form

Underflow Prevention

= Multiplying lots of probabilities, which are
between 0 and 1 by definition, can result in
floating-point underflow.

= Since log(xy) = log(x) + log(y), it is better to
perform all computations by summing logs
of probabilities rather than multiplying
probabilities.

= Class with highest final un-normalized log
probability score is still the most probable.

Naive Bayes Posterior Probabilities

= Classification results of naive Bayes
= |.e. the class with maximum posterior probability...
= Usually fairly accurate (?!1?1?)
= However, due to the inadequacy of the
conditional independence assumption...
= Actual posterior-probability estimates not accurate.
= Qutput probabilities generally very close to 0 or 1.

Evaluating Categorization

= Evaluation must be done on test data that are
independent of the training data
(usually a disjoint set of instances).
= Classification accuracy: ¢/n where
= n is the total number of test instances,
= ¢ is the number of correctly classified test instances.
= Results can vary based on sampling error due to
different training and test sets.
= Bummer... what should we do?
= Average results over multiple training and test sets
(splits of the overall data) for the best results.
= Bummer... that means we need lots of labeled data...




N-Fold Cross-Validation

= |deally: test, training sets are independent on each trial.
= But this would require too much labeled data.
= Cool idea:
= Partition data into N equal-sized disjoint segments.
= Run N trials, each time hold back a different segment for testing
= Train on the remaining N-1 segments.
= This way, at least test-sets are independent.
= Report average classification accuracy over the N trials.
= Typically, N = 10. gard
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Cross validation

= Partition examples into k disjoint equiv classes
= Now create k training sets

= Each set is union of all equiv classes except one

= So each set has (k-1)/k of the original training data

L

< Train >

Cross Validation

= Partition examples into k disjoint equiv classes

= Now create k training sets
= Each set is union of all equiv classes except one
= So each set has (k-1)/k of the original training data

Cross Validation

= Partition examples into k disjoint equiv classes

= Now create k training sets
= Each set is union of all equiv classes except one
= So each set has (k-1)/k of the original training data

!

Learning Curves

= In practice, labeled data is usually rare and
expensive.

= Would like to know how performance
varies with the number of training instances.

= |earning curves plot classification accuracy
on independent test data (Y axis) versus
number of training examples (X axis).

N-Fold Learning Curves

= Want learning curves averaged over multiple
trials.

= Use N-fold cross validation to generate N full
training and test sets.

= For each trial,
= train on increasing fractions of the training set

= measure accuracy on the test data
= for each point on the desired learning curve.




Sample Learning Curve
(‘Yahoo Science Data)

NaiveBayes: 10-fold CV Learning Curve —+—
~
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