Text Categorization (continued)

CSE 454

Course Overview

Immediate Organization

- Tues 11/1
 - Learning overview
 - Text categorization (Rocchio, nearest neighbor)
- Thurs 11/3
 - Text categorization (naïve Bayes); evaluation; topics
- Tues 11/8
 - Information extraction (HMMs)
- Thurs 11/10
 - KnowItAll (overview, rule learning, statistical model)
- Tues 11/15
 - KnowItAll (speedup, relational learning, opinion mining)

Review: Checkers as ML

- Task T:
 - Playing checkers
- Performance Measure P:
 - Percent of games won against opponents
- Experience E:
 - Playing practice games against itself
- Target Function
 - \(\hat{V}(b) = a + bx_1 + cx_2 + dx_3 + ex_4 + fx_5 + gx_6 \)

Approximating the Target Function

- Profound Formulation:
 - Can express any type of inductive learning as approximating a function
- E.g., Checkers
 - V: boards -> evaluation
- E.g., Handwriting recognition
 - V: image -> word
- E.g., Mushrooms
 - V: mushroom-attributes -> \{E, P\}

Supervised Learning

- Inductive learning or “Prediction”:
 - Given examples of a function \((X, F(X))\)
 - Predict function \(F(X)\) for new examples \(X\)
- Classification (“Categorization”)
 - \(F(X) = \text{Discrete}\)
- Regression
 - \(F(X) = \text{Continuous}\)
- Probability estimation
 - \(F(X) = \text{Probability}(X)\)
Learning ~ Prejudice meets Data

- The nice word for prejudice is “bias”.
- What kind of hypotheses will you consider?
 - What is allowable range of functions you use when approximating?
 - What kind of hypotheses do you prefer?

Two Strategies for ML

- Restriction bias: use prior knowledge to specify a restricted hypothesis space.
 - Rocchio
 - Naïve Bayes
- Preference bias: use a broad hypothesis space, but impose an ordering on the hypotheses.
 - General Bayesian learning

Rocchio Anomaly

- Prototype models ~ very strong bias
- Can’t represent polymorphic categories.

Bayesian Methods

- Learning and classification methods based on probability theory.
 - Bayes theorem plays a critical role in probabilistic learning and classification.
 - Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.
Axioms of Probability Theory

- All probabilities between 0 and 1
 \[0 \leq P(A) \leq 1\]
- True proposition has probability 1, false has probability 0.
 \[P(\text{true}) = 1 \quad P(\text{false}) = 0.\]
- The probability of disjunction is:
 \[P(A \lor B) = P(A) + P(B) - P(A \land B)\]

Conditional Probability

- \(P(A \mid B)\) is the probability of \(A\) given \(B\)
- Assumes:
 - \(B\) is all and only information known.
- Defined by:
 \[P(A \mid B) = \frac{P(A \land B)}{P(B)}\]

Independence

- \(A\) and \(B\) are independent iff:
 \[P(A \mid B) = P(A) \quad P(B \mid A) = P(B)\]
- Therefore, if \(A\) and \(B\) are independent:
 \[P(A \land B) = P(A)P(B)\]

Bayes Theorem

\[
P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)}
\]

Simple proof from definition of conditional probability:

\[
P(H \mid E) = \frac{P(H \land E)}{P(E)} \quad \text{(Def. cond. prob.)}
\]
\[
P(E \mid H) = \frac{P(H \land E)}{P(H)} \quad \text{(Def. cond. prob.)}
\]
\[
P(H \land E) = P(E \mid H)P(H) \quad \text{(Mult both sides of 2 by P(H))}
\]

QED: \[P(H \mid E) = \frac{P(E \mid H)P(H)}{P(E)} \quad \text{(Substitute 3 in 1.)}\]

Bayesian Categorization

- Let set of categories be \(\{c_1, c_2, \ldots, c_n\}\)
- Let \(E\) be description of an instance.
- Determine category of \(E\) by determining for each \(c_i\)
 \[P(c_i \mid E) = \frac{P(c_i)P(E \mid c_i)}{P(E)}\]
- \(P(E)\) can be determined since categories are complete and disjoint.
 \[
 \sum_{i=1}^{n} P(c_i \mid E) = \sum_{i=1}^{n} P(c_i)P(E \mid c_i) = 1
 \]
 \[P(E) = \sum_{i=1}^{n} P(c_i)P(E \mid c_i)\]
Bayesian Categorization (cont.)

- Need to know:
 - Priors: \(P(c_i) \)
 - Conditionals: \(P(E | c_i) \)
- \(P(c_i) \) are easily estimated from data.
 - If \(n_i \) of the examples in \(D \) are in \(c_i \), then \(P(c_i) = n_i / |D| \)
- Assume instance is a conjunction of binary features:
 \(E = e_1 \land e_2 \land \cdots \land e_m \)
- Too many possible instances (exponential in \(m \)) to estimate all \(P(E | c_i) \)

Naïve Bayesian Motivation

- Too many possible instances (exponential in \(m \)) to estimate all \(P(E | c_i) \)
- If we assume features of an instance are independent given the category \((c_i) \) (conditionally independent).
 \[P(E | c_i) = P(e_1 \land e_2 \land \cdots \land e_m | c_i) = \prod_{j=1}^{m} P(e_j | c_i) \]
- Therefore, we then only need to know \(P(e_j | c_i) \) for each feature and category.

Naïve Bayesian Categorization

- If we assume features of an instance are independent given the category \((c_i) \) (conditionally independent).
 \[P(E | c_i) = P(e_1 \land e_2 \land \cdots \land e_m | c_i) = \prod_{j=1}^{m} P(e_j | c_i) \]
- Therefore, we then only need to know \(P(e_j | c_i) \) for each feature and category.

Naïve Bayes Example

- \(C = \{ \text{allergy, cold, well} \} \)
- \(e_1 = \text{sneeze} \); \(e_2 = \text{cough} \); \(e_3 = \text{fever} \)
- \(E = \{ \text{sneeze, cough, ¬fever} \} \)

<table>
<thead>
<tr>
<th></th>
<th>Well</th>
<th>Cold</th>
<th>Allergy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(c_i))</td>
<td>0.9</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>(P(\text{sneeze}</td>
<td>c_i))</td>
<td>0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>(P(\text{cough}</td>
<td>c_i))</td>
<td>0.1</td>
<td>0.8</td>
</tr>
<tr>
<td>(P(\text{fever}</td>
<td>c_i))</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Evidence is Easy?

\[P(c_i | E) = \frac{\#}{\# + \#} \]

Or…. Are their problems?
Smooth with a Prior

\[P(c_i | E) = \frac{\# c_i + mp}{\# c_i + m} \]

\(p = \) prior probability
\(m = \) weight

Note that if \(m = 10 \), it means “I’ve seen 10 samples that make me believe \(P(X_i | S) = p \)”

Hence, \(m \) is referred to as the equivalent sample size

Estimating Probabilities

- Normally, probabilities are estimated based on observed frequencies in the training data.
- If \(D \) contains \(n_i \) examples in category \(c_i \), and \(n_{ij} \) of these \(n_i \) examples contains feature \(e_j \), then:
 \[P(e_j | c_i) = \frac{n_{ij}}{n_i} \]
- However, estimating such probabilities from small training sets is error-prone.
- If due only to chance, a rare feature, \(e_k \), is always false in the training data, \(\forall c_i: P(e_k | c_i) = 0 \).
- If \(e_k \) then occurs in a test example, \(E \), the result is that \(\forall c_i: P(E | c_i) = 0 \) and \(\forall c_i: P(c_i | E) = 0 \)

Smoothing

- To account for estimation from small samples, probability estimates are adjusted or smoothed.
- Laplace smoothing using an \(m \)-estimate assumes that each feature is given a prior probability, \(p \), that is assumed to have been previously observed in a “virtual” sample of size \(m \).
 \[P(e_j | c_i) = \frac{n_{ij} + mp}{n_i + m} = \frac{(n_{ij} + 1)}{(n_i + 2)} \]
- For binary features, \(p \) is simply assumed to be 0.5.

Naïve Bayes for Text

- Modeled as generating a bag of words for a document in a given category by repeatedly sampling with replacement from a vocabulary \(V = \{w_1, w_2, \ldots, w_m\} \) based on the probabilities \(P(w_j | c_i) \).
- Smooth probability estimates with Laplace \(m \)-estimates assuming a uniform distribution over all words (\(p = 1/|V| \)) and \(m = |V| \)
 - Equivalent to a virtual sample of seeing each word in each category exactly once.

Text Naïve Bayes Algorithm (Train)

Let \(V \) be the vocabulary of all words in the documents in \(D \)
For each category \(c_i \in C \)
 - Let \(D_i \) be the subset of documents in \(D \) in category \(c_i \)
 - \(P(c_i) = |D_i| / |D| \)
Let \(T_i \) be the concatenation of all the documents in \(D_i \)
Let \(n_i \) be the total number of word occurrences in \(T_i \)
For each word \(w_j \in V \)
 - Let \(n_{ij} \) be the number of occurrences of \(w_j \) in \(T_i \)
 - \(P(w_j | c_i) = (n_{ij} + 1) / (n_i + |V|) \)

Text Naïve Bayes Algorithm (Test)

Given a test document \(X \)
Let \(n \) be the number of word occurrences in \(X \)
Return the category:
\[\arg\max_{c_i \in C} P(c_i) \prod_{i=1}^{n} P(a_i | c_i) \]
where \(a_i \) is the word occurring the \(i \)th position in \(X \)
Naïve Bayes Time Complexity

- **Training Time:** $O(|D|L_d + |C||V|)$
 - where L_d is the average length of a document in D.
 - Assumes V and all D_i, n_i, and n_{ij} pre-computed in $O(|D|L_d)$ time during one pass through all of the data.
 - Generally just $O(|D|L_d)$ since usually $|C||V| < |D|L_d$
- **Test Time:** $O(|C| L_t)$
 - where L_t is the average length of a test document.
 - Very efficient overall, linearly proportional to the time needed to just read in all the data.
 - Similar to Rocchio time complexity.

Easy to Implement

- But…
- If you do… it probably won’t work…

Probabilities: Important Detail!

- $P(\text{spam} \mid E_1 \ldots E_n) = \prod_i P(\text{spam} \mid E_i)$

 Any more potential problems here?

- We are multiplying lots of small numbers
 Danger of underflow!
 - $0.5^{57} = 7 \times 10^{-18}$
- Solution? Use logs and add!
 - $p_1 * p_2 = e^{\log(p_1) + \log(p_2)}$
 - Always keep in log form

Underflow Prevention

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since $\log(xy) = \log(x) + \log(y)$, it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

Naïve Bayes Posterior Probabilities

- Classification results of naïve Bayes
 - I.e. the class with maximum posterior probability…
 - Usually fairly accurate (?)!!?)
- However, due to the inadequacy of the conditional independence assumption…
 - Actual posterior-probability estimates not accurate.
 - Output probabilities generally very close to 0 or 1.

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
- **Classification accuracy:** c/n where
 - n is the **total** number of test instances,
 - c is the number of **correctly classified** test instances.
- Results can vary based on sampling error due to different training and test sets.
 - Bummer… what should we do?
 - Average results over multiple training and test sets (splits of the overall data) for the best results.
 - Bummer… that means we need **lots** of labeled data…
N-Fold Cross-Validation

- Ideally: test, training sets are independent on each trial.
 - But this would require too much labeled data.
- Cool idea:
 - Partition data into \(N \) equal-sized disjoint segments.
 - Run \(N \) trials, each time hold back a different segment for testing
 - Train on the remaining \(N-1 \) segments.
- This way, at least test-sets are independent.
- Report average classification accuracy over the \(N \) trials.
- Typically, \(N = 10 \).

Also nice to report standard deviation of averages

Cross validation

- Partition examples into \(k \) disjoint equiv classes
- Now create \(k \) training sets
 - Each set is union of all equiv classes except one
 - So each set has \((k-1)/k\) of the original training data

Learning Curves

- In practice, labeled data is usually rare and expensive.
- Would like to know how performance varies with the number of training instances.
- Learning curves plot classification accuracy on independent test data (Y axis) versus number of training examples (X axis).

N-Fold Learning Curves

- Want learning curves averaged over multiple trials.
- Use \(N \)-fold cross validation to generate \(N \) full training and test sets.
- For each trial,
 - train on increasing fractions of the training set
 - measure accuracy on the test data
 - for each point on the desired learning curve.
Sample Learning Curve
(Yahoo Science Data)