CSE 454
Advanced Internet & Web Services

• Prof: Dan Weld
 - Most lectures, concepts, perspective.
• TA: Alan Liu
 - Machine/environment/software, project details
• Expectations:
 - Project (multiple parts, on time!)
 - Reading (papers, web - no formal text)
 - Class participation / development
• Caveat: Life on the cutting edge

My Background

• Research on Intelligent Internet Systems [1991-]
 - Internet Softbot (Discover award finalist '95)
 - Webcrawler by Brian Pinkerton
 - Metacrawler by Eric Selberg & Oren Etzioni
 - Mulder (first automated WWW question answerer)
 - KnowITAll - massive, autonomous information extraction
• Co-founded
 - Netbot
 - AdRelevance
 - Nimble Technology
 - Asta Networks
• Leaves of absence
 - VP Engineering at Netbot
 - Venture Partner w/ Madrona Venture Group.
• Incredible shortage of software engineers!
• Dearth of training

Your Background?

• Classes?
 - 444, 451, 461, 473
• Concepts?
 - Threads, race condition, deadlock
 - Naïve Bayes classifier
 - Hybrid hash join algorithm
 - Precision, recall
 - Fingerprint algorithm
 - LRU cache replacement policy
• Programming Background?
 - Java, .NET, J2EE, XML, admin own webserver

Course Outcomes

• After this course, you should know:
 - How search engines work
 - How to build scalable web sites
 - How Amazon generates personalized recommendations
 - How digital cash works
 - Issues in e-commerce
 - How to build peer2peer systems (overlay networks)
• Focus: search! (why?)

Why Search?

• A billion or so searches per day...
• Boost to productivity
 - Intellectual & economic
• Search is 'hot'
 - Google, Amazon, Ebay,
 - Search for/in books, products, music, people, ...
• Fascinating research problem.
 - Research complete: systems + AI
• You can learn to be a something of a search expert in one quarter!

Syllabus

• Introduction
 - History, networking overview, web server architecture
• Information Retrieval on the Web
 - Crawler, indexing, scaleup issues
 - Vector space model
 - Hyperlink analysis
• Data Mining
 - Collaborative filtering, clustering, classification
• Web Services
 - Protocols, brokers, meta-search, data integration
• Information Extraction
 - Question answering
 - The future of search
• Special Topics (Time permitting)
 - Semantic web, e-commerce, security, peer-to-peer, advertising
Course Overview

What This Course Is Not

...there is a difference between training and education. If computer science is a fundamental discipline, then university education in this field should emphasize enduring fundamental principles rather than transient current technology.

- We won't:
 - Teach you how to be a web master
 - Teach all the latest x-buzzwords in technology
 - (okay, may be a little).
 - Teach web/javascript/java/jdbc... programming

Grading

- Group Project
 - 85% Project (Homeworks)
 - Part artifact
 - Part writeup
 - Clear and concise explanation / justification
 - Experimentation
 - 15% Class participation

- Note: 454 is a capstone design class

Default (Group) Project

- Mini Google
 1. Create Inverted Index
 2. Ranking: IR++, Hyperlink analysis
 3. Search Mining: apply ML to ... ?
 - Text categorization ?
 - Clustering search results ?
 - Information extraction ?
 - ???

Or... Do your own thing

- Search UW library
- Search MSFT Help
- Search for Webcams
- ????

- But:
 - Move fast
 - Write one-page proposal, due in 1 week
 - Milestones are crucial

Warning

- No textbook
- Large project component
- Poorly documented, unstable systems
- Field changes quickly
 - Each year is essentially a new course
- Need students to help debug class!
Ancient History

- **Pre-history:** Census, Dewey Decimal system and other bizarre medieval rituals performed by hand.
- **1950s:** "Information Retrieval" (IR) term coined
- **1960 Ted Nelson proposes Xanadu Hypertext vision of WWW
- **1961 Kleinrock paper on packet switching** Contrast with phone lines, which are circuit switched.
- **1965 Gordon Moore proposes law**
- **1966 Design of ARPAnet**

History 2

- **1968 Doug Engelbart: the first WIMP**
 - Gerald Salton SMART system (Cornell)
 - "father of IR"
- **1969 First ARPAnet message UCLA -> SRI**
- **1970 ARPAnet spans country, has 5 nodes**
- **1971 ARPAnet has 15 nodes**
- **1972 First email programs, FTP spec**
- **1973 Ethernet operation at Xerox PARC**

History 3

- **1974 Intel launches 8080:**
 - TCP design
- **1975 Gates/Allen write Basic for Altair 8800**
- **1976 Apple Computer formed by Jobs/Wozniak**
- **1977 111 hosts on ARPAnet**
- **1979 Visicalc**
- **1980s: Proprietary document DBs**
 - Lexis-Nexis, Medline
- **1981 Microsoft has 40 employees:**
 - IBM PC

History 4

- **1983 ARPAnet uses TCP/IP**
 - Birth of internet
- **1983 Design of DNS**
- **1984 Launch of Macintosh;**
 - 1000 hosts on ARPAnet
- **1985 Symbolic.com first registered domain name**
- **1989 100,000 hosts on Internet**
- **1990 Cisco Systems goes public $288 M**
 - Tim Berners-Lee creates WWW at CERN
 - Archie (index file names, anon. ftp servers)

History 5

- **1991: Gopher (menus, links, to servers)**
- **1992: Veronica (index of menu items on gophers)**
- **1993: Jughead (keyword + boolean search)**
 - Mosaic browser developed at UIUC
 - Web grows by 341,000% in a year
 - WWW Wonderer (first crawler)
- **1994 Webcrawler built (UW class project!)**
 - Yahoo (directory) launched,
 - Netscape & Amazon formed
- **1995 Netscape IPO,**
 - Windows 95,
 - Ebay founded
 - MetaCrawler built (UW MS thesis)

Recent History

- **1997: Goto.com ("sponsored links" pay-per-click)**
 - AskJeeves (question answering)
 - Netbot (comparison-shopping search)
 - Amazon IPO
- **1998: Open directory launched**
 - Google, pagerank algorithm
- **1999: SE becomes portal (Yahoo, Excite)**
 - "Search is a commodity"
- **2000: Flipdog (information extraction)**
- **2001: Ascendance of Google**
 - "search is nirvana"
 - Dominance of advertising model
Approaching the Present

2002+:
- Image Search
- Dating sites (person search)
- Peer-peer systems
- VoIP
- Web Services
- Local search
- Browsing on mobile devices (cellphone, etc)
- Link-Spamming (Arms race to bias SE ranking)
- Social Networking Sites
- Desktop search
- Search for Maps
- Tagging
- Digital Earth

The Future?

Video Google
http://www.robots.ox.ac.uk/~az/talks/sicily.html
???

Search Engine Overview

- Spider
 - Crawls the web to find pages. Follows hyperlinks. Never stops
- Indexer
 - Produces data structures for fast searching of all words in the pages
- Retriever
 - Query interface
 - Database lookup to find hits
 - Ranking, summaries
- Front End

Standard Web Search Engine Architecture

Retrieval (Conceptually)

- Document-term matrix

\[
\begin{array}{cccccc}
\text{t}_1 & \text{t}_2 & \ldots & \text{t}_j & \ldots & \text{t}_m \\
\end{array}
\begin{array}{c}
\text{n}_f \\
\hline
\end{array}
\]

- \(w_{ij}\) is the weight of term \(t_j\) in document \(d_i\)
- Most \(w_{ij}\)'s will be zero.

Spiders (Crawlers, Bots)

- Queue := initial page URL_0
- Do forever
 - Dequeue URL
 - Fetch P
 - Parse P for more URLs, add them to queue
 - Pass P to (specialized?) indexing program
- Issues
 - Which page to look at next? (keywords, recency, ?)
 - Avoid overloading a site
 - How deep within a site to go (drill-down)?
 - How frequently to visit pages?
 - Traps!
Inverted Index

A file is a list of words by position.

- First entry is the word in position 1 (first word).
- Entry 4562 is the word in position 4562 (4562rd word).
- Last entry is the last word.

An inverted file is a list of positions by word.

Ranking models in IR

- **Key idea:**
 - We wish to return in order the documents most likely to be useful to the searcher.
- **To do this, we want to know which documents best satisfy a query:**
 - An obvious idea is that if a document talks about a topic more then it is a better match.
 - A query should then just specify terms that are relevant to the information need, without requiring that all of them must be present.

Precision & Recall

- **Precision** \(\frac{tp}{tp + fp}\): Proportion of selected items that are correct.
- **Recall** \(\frac{tp}{tp + fn}\): Proportion of target items that were selected.
- **Precision-Recall curve:** Shows tradeoff.

Precision-recall curves

System returned these.

Precision-recall curves

Ranking

- **Term Frequency**
- **Text on the page vs...**
- **Link structure**
- **???”

For next time

- Add yourself to mailing list.
- Think about project.
- Think about groups.