Spanner

Doug Woos
(based on slides by Dan Ports)
Bigtable in retrospect

- Definitely a useful, scalable system!
- Still in use at Google, motivated lots of NoSQL DBs

- Biggest mistake in design (per Jeff Dean, Google): not supporting distributed transactions!
 - became really important w/ incremental updates
 - users wanted them, implemented themselves, often incorrectly!
 - at least 3 papers later fixed this — two next week!
Transactions

• Important concept for simplifying reasoning about complex actions

• Goal: group a set of individual operations (reads and writes) into an atomic unit

 • e.g., checking_balance -= 100, savings_balance += 100

• Don’t want to see one without the others

 • even if the system crashes (atomicity/durability)

 • even if other transactions are running concurrently (isolation)
Traditional transactions

- as found in a single-node database
- atomicity/durability: write-ahead logging
 - write each operation into a log on disk
 - write a commit record that makes all ops commit
 - only tell client op is done after commit record written
 - after a crash, scan log and redo any transaction with a commit record; undo any without
Traditional transactions

- isolation: concurrency control
 - simplest option: only run one transaction at a time!
 - standard (better) option: two-phase locking
 - keep a lock per object / DB row, usually single-writer / multi-reader
 - when reading or writing, acquire lock
 - hold all locks until after commit, then release
Transactions are hard

• definitely oversimplifying: see a database textbook on how to get the single-node case right

• …but let’s jump to an even harder problem: distributed transactions!

• What makes distributed transactions hard?
 • savings_bal and checking_bal might be stored on different nodes
 • they might each be replicated or cached
 • need to coordinate the ordering of operations across copies of data too!
Correctness for isolation

- usual definition: serializability
 each transaction’s reads and writes are consistent
 with running them in a serial order, one transaction
 at a time

- sometimes: strict serializability = linearizability
 same definition + real time component

- two-phase locking on a single-node system
 provides strict serializability!
Weaker isolation?

• we had weaker levels of consistency: causal consistency, eventual consistency, etc

• we can also have weaker levels of isolation

• these allow various anomalies: behavior not consistent with executing serially

• snapshot isolation, repeatable read, read committed, etc
Weak isolation vs weak consistency

• at strong consistency levels, these are the same: serializability, linearizability/strict serializability

• weaker isolation: operations aren’t necessarily atomic
 A: savings -= 100 checking += 100
 B: read savings, checking
 but all agree on what sequence of events occurred!

• weaker consistency: operations are atomic, but different clients might see different order
 A sees: s -= 100; c += 100; read s,c
 B sees: read s,c; s -= 100; c += 100
Two-phase commit

• model: DB partitioned over different hosts, still only one copy of each data item; one coordinator per transaction

• during execution: use two-phase locking as before; acquire locks on all data read/written

• to commit, coordinator first sends prepare message to all shards; they respond prepare_ok or abort
 • if prepare_ok, they must be able to commit transaction later; past last chance to abort.
 • Usually requires writing to durable log.

• if all prepare_ok, coordinator sends commit to all; they write commit record and release locks
Is this the end of the story?

- Availability: what do we do if either some shard or the coordinator fails?

 - generally: 2PC is a blocking protocol, can’t make progress until it comes back up

 - some protocols to handle specific situations, e.g., coordinator recovery

- Performance: can we really afford to take locks and hold them for the entire commit process?
Spanner

- Backend for the F1 database, which runs the ad system
- Basic model: 2PC over Paxos
- Uses physical clocks for performance
Example: social network

- simple schema: user posts, and friends lists
- but sharded across thousands of machines
- each replicated across multiple continents
Example: social network

• example: generate page of friends’ recent posts

• what if I remove friend X, post mean comment?
 • maybe he sees old version of friends list, new version of my posts?

• How can we solve this with locking?
 • acquire read locks on friends list, and on each friend’s posts
 • prevents them from being modified concurrently
 • but potentially really slow?
Spanner architecture

- Each shard is stored in a Paxos group
 - replicated across data centers
 - has a (relatively long-lived) leader
- Transactions span Paxos groups using 2PC
 - use 2PC for transactions
 - leader of each Paxos group tracks locks
 - one group leader becomes the 2PC coordinator, others participants
Basic 2PC/Paxos approach

- during execution, read and write objects
 - contact the appropriate Paxos group leader, acquire locks
- client decides to commit, notifies the coordinator
 - coordinator contacts all shards, sends PREPARE message
 - they Paxos-replicate a prepare log entry (including locks),
 - vote either ok or abort
- if all shards vote OK, coordinator sends commit message
 - each shard Paxos-replicates commit entry
 - leader releases locks
Basic 2PC/Paxos approach

• Note that this is really the same as basic 2PC from before
• Just replaced writes to a log on disk with writes to a Paxos replicated log!
• It is linearizable (= strict serializable = externally consistent)

• So what’s left?
 • Lock-free read-only transactions