MapReduce

Doug Woos
Logistics notes

Deadlines, etc. up on website
Slip day policy
Piazza!!!

https://piazza.com/washington/spring2017/cse452
Outline

- Why MapReduce?
- Programming model
- Implementation
- Technical details (performance, failure, limitations)
- Lab 1
- Piazza discussion
Why MapReduce?

Distributed systems are hard
- Failure
- Consistency
- Performance
- Testing
- etc. etc

Shouldn’t have to write one for every task
- separation of concerns
Separation of concerns

User program

MapReduce

Distributed filesystem
Separation of concerns

User program

MapReduce

Distributed filesystem
Programming model

Input: list of key/value pairs

[((“1”, “in the town where I was born”),
 (“2”, “lived a man who sailed to sea”),
 (“3”, “and he told us of his life”),
 (“4”, “in the land of submarines”),
...)]

Output: list of key/value pairs

[((“13”, “yellow”),
 (“9”, “submarine”),
 (“7”, “in”),
 (“7”, “we”),
...)]
Programming model

Map: \((k1, v1) \rightarrow [(k2, v2)]\)

\[
\text{for word in value:} \\
\quad \text{emit (word, "1")}
\]

Reduce: \((k2, [v2]) \rightarrow [v3]\)

\[
\text{emit len(values)}
\]
Programming model

Map runs on every key/value pair, produces new pairs

["("In", "1"), ("the", "1"), ("town", "1"), ("where", "1"), …]

Resulting pairs sorted by key

[[("a", "1"), ("a", "1"), ("a", "1"), …],
[("and", "1"), ("and", "1"), ("and", "1"), …],
…]

Reduce runs on every key and all associated values

[(["13", "yellow"),
 ("9", "submarine"),
 ("7", "in"),
 ("7", "we"),
…]
Other example programs

Surprising anagram finder

- emit (sorted(value), value)
- emit highest scoring anagram in values

PageRank

- for outbound link in page.links:
 emit (url, page.rank)
 - page.rank = sum(page.rank for page in links) / len(page.links)

Others?
Separation of concerns

User program

MapReduce

Distributed filesystem
MapReduce Implementation

Goals:

- Run on large amount of data
- Run in parallel
- Tolerate failures/slowness at worker nodes

Assume:

- Distributed filesystem
- No master failures
MapReduce Architecture

Master

Worker

Worker

Worker

Worker

Worker

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Distributed filesystem

Register()
MapReduce steps

Master

M map tasks, R reduce tasks

Worker

Worker

Distributed filesystem
MapReduce steps

Master

Split input into M
~ fixed-size splits

Worker

Worker

Distributed filesystem
MapReduce steps

Master

Write splits

\textit{mrtmp.<name>}-<m>

Worker

Worker

Distributed filesystem
MapReduce steps

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Get k-v pairs

$mrtmp.<name>-<m>$

Distributed filesystem
MapReduce steps

Call Map() on k-v pairs
Partition results into R “regions”

Distributed filesystem
MapReduce steps

Master

Worker

Write regions

mrtmp.<name>-<m>-<r>

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Distributed filesystem

return
MapReduce steps

Master

Wait for M Map tasks to finish

Worker

Worker

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Distributed filesystem

\text{DoReduce}(r) \times R
MapReduce steps

Master

Worker

Worker

Get k-v pairs for r

\[mrtmp.<name>-<m>-<r> \]

Distributed filesystem
MapReduce steps

Master

Worker

Worker

Distributed filesystem

Sort pairs

Run Reduce() per key
MapReduce steps

Master

Worker

Worker

Distributed filesystem

Write results
MapReduce steps

Master

Worker

Worker

return

Distributed filesystem
Separation of concerns

User program

MapReduce

Distributed filesystem
Distributed filesystem

Will cover later in the quarter!
In the lab, just use the local FS
For now, it’s sort of a black box
But: why the 64MB default split size?
What if we didn’t have a distributed filesystem?
Technical details

- Failures
- Performance
- Optimizations
- Limitations
Handling failure

Basically: just re-run the job

- Handle stragglers, failures in the same way
- If the master fails, have to start over
- How would we handle a master failure?

Why is this easy in MapReduce?

Why wouldn’t this be easy in other systems?

- Can I re-run “charge user’s credit card?”
Fault-tolerance model

Master never fails

Workers are fail-stop
 - Don’t send garbled packets
 - Don’t otherwise misbehave
 - Can reboot

Packets can be dropped
Performance

How much speedup do we want on N servers?
How much speedup do we expect on N servers?
What are the bottlenecks?
Optimizations

Data locality is key
- Run Map jobs near data
- Can we run Reduce jobs near data?

Run Reduce function on each Map node’s results
- “Combiner” function in the paper
- When can we do this?
Limitations

What problems doesn’t MR solve?
DeWitt/Stonebraker critique

1. A giant step backward in the programming paradigm for large-scale data intensive applications

2. A sub-optimal implementation, in that it uses brute force instead of indexing

3. Not novel at all: represents a specific implementation of well known techniques developed nearly 25 years ago

4. Missing most of the features that are routinely included in current DBMS

5. Incompatible with all of the tools DBMS users have come to depend on
Lab 1

Linked from the course website now!

Due next Friday (April 7), 9:00pm

Turn-in procedure:

- Dropbox on course site
- One partner turns in code
- Both partners turn in **brief** writeup
- Writeup: ~ how long it took, ~ which parts you did
Lab 1

Three parts:

- Implement word count
- Implement naive MapReduce master
- Handle worker failures

Some simplifications w.r.t the paper:

- Map takes strings, not k/v pairs
- Runs locally, so no separation btw local/global FS
- No partial failures (no file-write issues)
Lab 1

Partly a warm-up exercise: learn Go, etc.
Go tutorial section tomorrow
Some general hints next lecture
Have fun!
Discussion

What’s the deal with master failure?
Why is atomic rename important?
Why not store intermediate results in RAM?
 - Apache Spark
Aren’t some Reduce jobs much larger?
What about infinite loops?
Why does novelty matter?