Service Oriented Architecture

Tom Anderson

QOutline

Last time:
Applied Paxos: Raft and MetaSync

Today:
SOA: Architecture of complex web services

2/10/16



Yegge

Thesis: Google (and others) should use SOA as
an engineering discipline.

Amazon SOA

 All teams must expose their data and
functionality through service interfaces

e Teams must communicate with each other
through these interfaces

* No other form of IPC allowed: only via service
interface calls over the network
e All service interfaces must be externalizable

Deisgn to be exposed to developers in the outside
world

2/10/16



2/10/16

Terminology

* Service Level Agreement (SLA)

— Guarantee provided to clients wrt service response
time/availability

— Also: a guarantee by clients as to how they will use
the service

* Availability guarantee: use Paxos!

* How do you provide a performance guarantee?
— Isn’t it affected by workload/# of users/types of RPCs?

How Did Amazon Apply SOA?

* Decompose website into thousands of
primitive services

e Every team runs their service as a standalone
product -- including operations

* Every service provides its clients an SLA
guarantee




What Did Google Do?

Architect website into hundreds of primitive
services

Central planning for capacity utilization
Central operations
Expect service clients to be well-behaved

Why SOA?

Separate interfaces for external developers =>
feeble API’s

Need first class API's to attract developers

Need developers to add value: no company is
perfect at building apps

Better for system robustness

2/10/16



Why Platforms?

* Network Effect

— Value of system grows faster than linearly with
number of users

— Eg: Facebook, Amazon, Google, iPhone,
 Zipf Distribution

— Popularity as a function of popularity rank

— Most of the volume in the tail

Lessons

What lessons do you think Amazon learned from
adopting SOA?

2/10/16



Meta Lessons

Platform => accessibility

Design for SOA from scratch
— Not as an add on after product release

SOA Lessons

1. Pager escalation
2. Need an automated service registry

3. Every user of an interface is a potential
source of DoS/SLA violation

4. Only way to tell if a service is up/functional is

touseit
— testing and fault monitoring are identical

5. Cross service debugging

2/10/16



2/10/16

SOA and SLA’s

SLA’s must be negotiated.

— If a service has a resource limit, then customers
need to know it and work around it.

— If all interfaces are public, need an API for
negotiating SLA’s

Caches and SLAs

With a cache, system can run 10-100x faster
than without.

If cache fails, what happens to the SLA?
Primary/backup for caches?




2/10/16

More Lessons

Users care about getting an answer quickly.

Make sure the answer delivered quickly was the right
answer!

Service evolution is a necessity
How does a service registry work for evolution?
How does RPC work with evolution?

Implications

What implications does the Yegge argument
have for university CS research?




Memcache

* Application front end

— Stateless, rapidly changing program logic
* Memcache

— Middle layer to cache results from storage servers
» Storage backend

— Stateful

— Careful engineering to provide safety and
performance

— Easily overwhelmed by flash crowds

Shards

* How do we consistently assign work to a set of
nodes, some of which may fail?

— Consistently => assignment stays (mostly) the
same after a failure

* Hashing not enough

— change # of hash buckets => change every
assignment

2/10/16



Consistent Hashing

2/10/16

10



