Spanner Motivation

Tom Anderson

QOutline

Last week:

— Chubby: coordination service

— BigTable: scalable storage of structured data

— GFS: large-scale storage for bulk data
Today/Friday:

— Lessons from GFS/BigTable

— Megastore: Multi-key, multi-data center NoSQL

— Spanner: Multi-key, multi-data center NoSQL using
real-time

2/23/16

2/23/16

GFS Architecture

Application X “Q mactor e
I (file name, chunk index) | GFS master » /foo/bar
GFS client File namespace chunk 2ef0
1 (chunk handle, /
chunk locations) /

Legend:
mmm) Data messages
— Control messages

Instructions to chunkserver

Chunkserver state

(chunk handle, byte range)

GF'S chunkserver GFS chunkserver

chunk data

Linux file system Linux file system

* each file stored as 64MB chunks

* each chunk on 3+ chunkservers

* single master stores metadata

At Least Once Append

* If failure at primary or any replica, retry append
(at new offset)
— Append will eventually succeed!
— May succeed multiple times!
* App client library responsible for
— Detecting corrupted copies of appended records
— Ignoring extra copies (during streaming reads)

* Why not append exactly once?

2/23/16

Question

Does the BigTable tablet server use “at least
once append” for its operation log?

Data Corruption

* Files stored on Linux, and Linux has bugs
— Sometimes silent corruptions

* Files stored on disk, and disks are not fail-stop
— Stored blocks can become corrupted over time
— Ex: writes to sectors on nearby tracks
— Rare events become common at scale

* Chunkservers maintain per-chunk CRCs (64KB)
— Local log of CRC updates
— Verify CRCs before returning read data
— Periodic revalidation to detect background failures

2/23/16

~15 years later

* Scale is much bigger:
— now 10K servers instead of 1K
—now 100 PB instead of 100 TB
* Bigger workload change: updates to small files!

* Around 2010: incremental updates of the
Google search index

GFS -> Colossus

* GFS scaled to ~50 million files, ~10 PB

* Developers had to organize their apps around
large append-only files (see BigTable)

 Latency-sensitive applications suffered

* GFS eventually replaced with a new design,
Colossus

Metadata scalability

Main scalability limit: single master stores all
metadata

HDFS has same problem (single NameNode)

Approach: partition the metadata among
multiple masters

New system supports ~100M files per master
and smaller chunk sizes: 1MB instead of 64MB

Reducing Storage Overhead

Replication: 3x storage to handle two copies

Erasure coding more flexible: m pieces, n check
pieces

— e.g., RAID-5: 2 disks, 1 parity disk (XOR of other two) =>
1 failure w/ only 1.5 storage

Sub-chunk writes more expensive (read-modify-write)

Recovery is harder:
usually need to get all the other pieces,
generate another one after the failure

2/23/16

Erasure Coding

* 3-way replication:
3x overhead, 2 failures tolerated, easy recovery

* Google Colossus: (6,3) Reed-Solomon code
1.5x overhead, 3 failures

* Facebook HDFS: (10,4) Reed-Solomon
1.4x overhead, 4 failures, expensive recovery

* Azure: more advanced code (12, 4)
1.33x, 4 failures, same recovery cost as Colossus

BigTable System Structure

Bigtable client

Bigtable cell

Bigtable client
| Bigtable master [library

performs metadata ops, Open()
load balancing

| Bigtable tablet server | Bigtable tablet server | | Bigtable tablet scr\'cr|

serves data serves data serves data

tluster Scheduling Mastell

handles failover, monitoring holds tablet data, logs holds metadata,
handles master-election

2/23/16

Tablet Representation

Read

" Write

SSTable on SSTable on SSTable on
GFS
GFS
(mmap)
Tablet

+ SSTable: Immutable on-disk ordered map from string—>string
» String keys: <row, column, timestamp> triples

Compactions

« Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

* Minor compaction:

— When in-memory state fills up, pick tablet with most data
and write contents to SSTables stored in GFS

» Separate file for each locality group for each tablet

» Major compaction:

— Periodically compact all SSTables for tablet into new base
SSTable on GFS

« Storage reclaimed from deletions at this point

2/23/16

Timestamps

« Used to store different versions of data in a cell

— New writes default to current time, but timestamps for
writes can also be set explicitly by clients

 Lookup options:
— "Return most recent K values”
— "Return all values in timestamp range (or all values)”

« Column families can be marked w/ attributes:
— "Only retain most recent K values in a cell”
— "Keep values until they are older than K seconds”

API

» Metadata operations
— Create/delete tables, column families, change
metadata
» Writes (atomic)
— Set(): write cells in a row
— DeleteCells(): delete cells in a row
— DeleteRow(): delete all cells in a row

« Reads

— Scanner: read arbitrary cells in a bigtable
» Each row read is atomic
« Can restrict returned rows to a particular range
+ Can ask for just data from 1 row, all rows, etc.

+ Can ask for all columns, just certain column families, or
specific columns

2/23/16

Shared Logs

» Designed for 1M tablets, 1000s of tablet servers
— 1M logs being simultaneously written performs badly

« Solution: shared logs
— Write log file per tablet server instead of per tablet
+ Updates for many tablets co-mingled in same file
— Start new log chunks every so often (64MB)

» Problem: during recovery, server needs to read log
data to apply mutations for a tablet

— Lots of wasted I/0O if lots of machines need to read data for
many tablets from same log chunk

Shared Log Recovery

Recovery:

 Servers inform master of log chunks they
need to read

» Master a%gregates and orchestrates sorting of
needed chunks

— Assigns log chunks to be sorted to different tablet
servers

— Servers sort chunks by tablet, writes sorted data
to local disk
» Other tablet servers ask master which servers
have sorted chunks they need

« Tablet servers issue direct RPCs to peer tablet
servers to read sorted data for its tablets

2/23/16

Compression

« Many opportunities for compression

— Similar values in the same row/column at different
timestamps

— Similar values in different columns
— Similar values across adjacent rows

« Within each SSTable for a locality group, encode
compressed blocks

— Keep blocks small for random access (~64KB
compressed data)

— Exploit fact that many values very similar
— Needs to be low CPU cost for encoding/decoding

Compression Effectiveness

Experiment: store contents for 2.1B page crawl in BigTable instance
— Key: URL of pages, with host-name portion reversed

« com.cnn.www/index.html:http
— Groups pages from same site together

» Good for compression (neighboring rows tend to have similar contents)
» Good for clients: efficient to scan over all pages on a web site

« One compression strategy: gzip each page: ~28% bytes remaining
+ BigTable: BMDiff + Zippy

Type Count(B) Space(TB) Compressed %o remaining
Web contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

2/23/16

10

Summary of BigTable Key Ideas

Unstructured key-value table data
— No need for having a schema in advance
— instead create columns when needed
Versioned data, with key-specific garbage collection

Maintain data locality on same tablet

Instead of consistent hashing, reconfigure tablet
boundaries for load balancing

Tablets for lookup: key -> tablet
Efficient updates using log structure (store deltas)

BigTable in retrospect

* Definitely a useful, scalable system!

* Still in use at Google, motivated lots of NoSQL
DBs

* Lack of distributed transactions: biggest
mistake in design, per Jeff Dean

 Lack of multi-data center support

2/23/16

11

Question

How would you add multi-key transactions to
BigTable?

— Easy if all keys are on the same tablet, or on
different tablets on the same tablet server

— What if keys are on different tablet servers?

Multi-Key NoSQL Transactions

* Straw proposal: Two phase commit
— Select one tablet server as coordinator
— Add log entries for coordinator/participant actions
— Check log if coordinator or participant fails

* What if coordinator/participant crashes?
— BigTable master wait for lease timeout
— Select new tablet server

— New tablet server recovers in progress transactions
using log
— Abort/commit as appropriate

2/23/16

12

Performance of NoSQL 2PC

What is performance of multi-key transactions
using two phase commit?

Each tablet server orders operations to its own keys

If coordinator, must lock or delay subsequent
operations to that key, until participants reply

If participant, must lock or delay subsequent ops to
that key, until coordinator commits/aborts

All ops to key are delayed, not just multi-key ones

e Stale reads to the rescue?

Question

How would you add support for multiple data
centers to BigTable?

2/23/16

13

Multiple Data Center NoSQL

» Straw proposal: Paxos state machine replicas
— Every data center has complete copy of data
— One serves as Paxos leader (per tablet or per key)
— Clients contact leader
— Leader proposes ordering of client ops to tablet

* Paxos implies

— correct despite data center failures, network
partitions, etc.

— Progress if a majority of data centers remain up and
connected

Multi-Data Center Paxos Performance

* Assume Paxos is optimized: one round from leader
to participants per operation (batched)

* Latency:
— One RT from client to (remote) leader
— One RT from leader to farthest data center
* Throughput
— Every operation sent to every data center
— N messages to coordinate Paxos ordering (batched)
* Per-transaction: two log operations at coordinator,
two at each participant

e Stale reads to the rescue?

2/23/16

14

Megastore Motivation

* Many apps need atomicity across rows
— Examples: gmail, google+, picasa, ...

* Many apps need to span multiple data centers

— Hide outages from end users

— Low latency for every user on planet
e Goals:

— Fast local reads

— At cost of slower writes

Megastore Key ldeas

* BigTable as a service
— No need to reimplement NoSQL
— Two phase commit across keys
— operation log stored in a BT column
» Use data center for testing
— Extensive randomized testing of corner cases

2/23/16

15

2/23/16

Megastore Key ldeas

» Paxos with replica in each data center
— Most operations are reads
— For writes, rotating leader — wait turn to propose

» Special quorum rules
— reads require one replica, can always be local
— Writes require majority (of data centers) to commit
— Writes require all replicas before return to client

— If data center fails, wait for lease expire, then return
to client

16

