
Weak Consistency and
Disconnected Operation

in git
Raymond Cheng 

ryscheng@cs.washington.edu



Motivation
How can we support disconnected or weakly connected operation?

Applications

● File synchronization across users / devices (e.g. Dropbox)
● Source code control (e.g. git)
● Disconnected / intermittent connectivity (e.g. laptops, mobile, 3rd world)



Consistency Recap
Sequential consistency: 
everyone sees same read/write order (cache coherence, Paxos)

Release consistency: 
everyone sees writes in unlock order (x86/ARM)
(more generally, reads/writes forced to complete at memory barriers)

Sequential/release consistency is slow:

● wait at memory barrier
● communication needed if recently modified by another node

or if write and the local copy is not exclusive



Source Code Control
● Eventual Consistency

○ Okay to read/write cached copy (different versions)
○ Check if it’s okay later, recover if necessary

● Track history (with metadata)
● Concurrent editing / Many contributors
● Working copy: Don’t want files to change beneath you

○ Push / Pull to server/peers
○ Contributors may be offline / disconnected

● Cheap Branches / Merging
● Centralized / Distributed



CVS (1990)
● Client-server architecture

○ Check out a working copy
○ Check in your changes

● Server arbitrates order of changes
○ Only accept changes to the most recent version of a file
○ Developers must always keep their files up to date



Server

file1:
● revision: 1.2

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

checkout

CVS Workflow



Server

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.2

file2:
● revision: 1.10

commit file1 
r1.3

Edit file1

CVS Workflow



Server

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.11

Commit file1 file2 
FAILS

Edit file1, file2

CVS Workflow



Server

file1:
● revision: 1.4

file2:
● revision: 1.11

Client 1

file1:
● revision: 1.3

file2:
● revision: 1.10

Client 1

file1:
● revision: 1.3 => 1.4

file2:
● revision: 1.11

update file1 
r1.3

Fix file1 
conflicts

commit file1 file2 
SUCCEEDS

CVS Workflow



CVS Limitations
● Everyone is editing the same repository

○ How do you implement a complex feature without constantly conflicting?

● No local version control
○ cvs commit ~ git commit && git push

● No log
○ How do I time travel?

● No versioning of moving / renaming files
● Depends on live server to operate

○ Needs to be scaled / backed up / always up / reachable

● Branches were expensive
○ Manual locks are common

● No atomicity (e.g. network failure lead to inconsistency)



Apache SVN (2000)
● “CVS done right”
● Improvements

○ Atomic commits
○ Renamed / moved / copied files retained version history
○ Versioning of directories and metadata
○ Cheap branches / tagging

● Centralized - server/client architecture
● Still active

○ All of Facebook’s source code was in a single SVN repository until 2014



Commit Log

A:0 A:1 A:2 A:3 A:4 A:5



Branching

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:1 B:1



Merging

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:2 B:3

A:5 Ancestry Set
{A: 0-4, B:1-3}



Merging and Causal Ordering

Example:
C1: f=1 -> C2
C2:               f=2 -> C3
C3:                               f=3 -> C1

Example:
C1: a=1 -> C2
C2: b=2 -> C3
C3: c=3 -> C1

Operations that potentially are causally related are seen by every node of the 
system in the same order



Merging

A:0 A:1 A:2 A:3 A:4 A:5

B:1 B:2 B:3

A:6

B:4

A:5 Ancestry Set
{A: 0-5, B:1-4}



git (2005)
● Distributed!

○ Everyone is a replica

● Consistency and performance
○ Protects from memory, disk corruption

● Cheap branches / merges
● .git/

○ Config
○ Content-addressable filesystem
○ Log of changes (commit history)



Logs (Commit Histories)
● Complete log of changes (needed for time travel with source code control)

○ Directed acyclic graphs (DAG)

● commit
○ parents
○ deltas (changes to content)
○ hash - for consistency

○ metadata 







Content Addressable Filesystem
.git/objects



Reconciling Conflicts
● Last writer wins (AFS, NFS)
● User-specified conflict handler
● Manual reconciliation (git, svn)
● Conflict-free replicated data types (CRDT)

○ Data types such that conflicts are impossible
○ Operation-based CRDT (e.g. commutative replicated data types)



Operational Transforms


