RPC and Clocks

Tom Anderson

Last Time
* Go
— Synchronization
— RPC

* Lab 1 RPC

1/10/16

1/10/16

Topics

* MapReduce
— Fault tolerance
— Discussion

* RPC
— At least once
— At most once
— Exactly once

e Lamport Clocks
— Motivation

MapReduce Fault Tolerance Model

Master is not fault tolerant

— Assumption: this single machine won't fail while
running a mapreduce app

Many workers, so have to handle their failures
— Assumption: workers are fail stop
— They can fail and stop
— They may reboot

— They don't send garbled weird packets after a
failure

What kinds of faults does MapReduce
need to tolerate?

* Network:
— lost packets
duplicated packets
temporary network failure
server disconnected
network partitioned
* Worker:
— crash+restart
— Permanent failure
— All workers fail simultaneously -- power/earthquake
— Crash mid-way through complex operation
* What if?
— Bug in map function, so that mapper crashes every time?

Tools for Dealing With Faults

* Retry

— if pkt is lost: resend

— worker crash: give task to another worker

— may execute MR job twice! (is this ok? Why?)
* Replicate

— E.g., input files on multiple storage servers
* Replace

— E.g., add new worker after old one fails

1/10/16

1/10/16

Lab 1 MapReduce Simplifications

* No key in map
e Assume global file system
* No partial failures

— Files either completely written or not created

— If restart some failed operation, ok to write to the
same filename

DeWitt/Stonebraker Critique

* A giant step backward in the programming paradigm
for large-scale data intensive applications

* A sub-optimal implementation, in that it uses brute
force instead of indexing

* Not novel at all: represents a specific implementation
of well known techniques developed nearly 25 years
ago

* Missing most of the features that are routinely
included in current DBMS

* Incompatible with all of the tools DBMS users have
come to depend on

To understand why some technologies win:
The Innovator's Dilemma, Clayton Christensen

Remote Procedure Call (RPC)

A request from the client to execute a function on the
server.
* Onclient
— Ex:z=DoMap(worker, i)
— Parameters marshalled into a message (can be arbitrary
types)
— Message sent to server (can be multiple pkts)
— Wait for reply
* Onserver
— message is parsed
— operation (DoMap(i)) invoked
— Result marshalled into a message (can be multiple pkts)
— Message sent to client

1/10/16

RPC vs. Procedure Call

* What is equivalent of:
— The name of the procedure?
— The calling convention?
— The return value?
— The return address?

RPC vs. Procedure Call

Binding
— Client needs a connection to server
— Server must implement the required function
— What if the server is running a different version of the code?
Performance
— procedure call: maybe 10 cycles = ~3 ns
— RPCin data center: 10 microseconds => ~1K slower
— RPCin the wide area: millions of times slower
Failures
— What happens if messages get dropped?
What if client crashes?
What if server crashes?
What if server appears to crash but is slow?
What if network partitions?

1/10/16

Three Options if RPC Doesn’t Return

At least once (NFS, DNS, ...)
— keep retrying until RPC succeeds

* At most once (Go, ...)
— Retry, but make sure RPC is never executed more
than once

* Exactly once

— Make sure RPC is always executed and never
executed more than once

At Least Once

RPC library waits for response for a while
If none arrives, re-send the request
Do this a few times

Still no response -- return an error to the
application

1/10/16

Non-replicated key/value server

Client sends Put(a)
Server gets request, but network drops reply

Client sends Put(a) again
— should server respond "yes"?
— or"no"?

What if operation is "deduct $10 from bank
account”?

Does TCP Fix This?

* TCP: reliable bi-directional byte stream between
two endpoints
— Retransmission of lost packets
— Duplicate detection
* But what if TCP times out and client reconnects?
— Browser connects to Amazon
— RPC to purchase book
— Wifi times out during RPC
— Browser reconnects

1/10/16

When is at-least-once OK?

* If no side effects
— read-only operations (or idempotent ops)

* If application has its own plan for detecting
duplicates

* Example: NFS
— readFileBlock
— writeFileBlock

At Most Once

Client includes unique ID (UID) with each request
— use same UID for re-send
Server RPC code detects duplicate requests
— return previous reply instead of re-running handler
if seen[uid] {
r = old[uid]
}else {
r = handler()
old[uid] =r
seen[uid] = true

1/10/16

Some At-Most-Once Issues

How do we ensure UID is unique?
— Big random number?
— Combine unique client ID (IP address?) with
sequence #?
— What if client crashes and restarts? Can it reuse
the same UID?

— Maybe client should get its unique ID from the
server?

When Can Server to Discard Old RPCs?

Option 1:
Never?
Option 2:
unique client IDs
per-client RPC sequence numbers
client includes "seen all replies <= X" with every RPC
Option 3: only allow client one outstanding RPC at a time
arrival of seg+1 allows server to discard all <= seq
Option 4: client agrees to keep retrying for < 5 minutes
server discards after 5+ minutes

1/10/16

10

What if Server Crashes?

If at-most-once list of recent RPC results is
stored in memory, server will forget and accept
duplicate requests when it reboots

— Does server need to write the recent RPC results
to disk?

— If replicated, does replica also need to store
recent RPC results?

Go RPCis “at most once”
and “usually once”

* Open TCP connection
* Write request to TCP connection

* TCP may retransmit, but server's TCP will filter out
duplicates

* No retry in Go code (i.e. will NOT create 2nd TCP
connection)

* Go RPC code returns an error if it doesn't get a reply
— perhaps after a timeout (from TCP)
— perhaps server didn't see request

— perhaps server processed request but server failed before
reply came back

— Perhaps server processed request and network failed

1/10/16

11

Go RPC at-most-once is not enough

What if RPC sent over TCP, but reply never
arrives and socket fails?

— If worker doesn't respond, the master re-sends to
another worker

— But original worker may have not failed, and is
working on it too

Go RPC can't detect this kind of duplicate

— Inlab 2 you will have to protect against these
kinds of duplicates

Exactly Once

To survive client crashes, client needs to record
pending RPC’s on disk

— So that we can replay them with the same UID

To survive server crashes, need to record results of
completed RPC’s on disk

— So that we can suppress duplicates

In other words, similar to two phase commit!

1/10/16

12

Lamport Clocks

Can we make sure everyone agrees on the same
order of events?

An issue if:
— multiple clients, multiple servers
— even if there are no failures

— even if messages are delivered in order sent by each
client (“processor order”)

Facebook Storage System

Initially:
— afew front end web servers to do application logic
— asingle backend storage server
To scale, add more front ends, more back end servers:

— Each front end pulls data from multiple servers (e.g., one
for privacy settings, one for pictures).

— Do users see a consistent view?
Now add some intermediate caches:
— 100+ lookups per page
— 1B+ users: 1M+ front ends, 1M+ caches, 1M+ servers

1/10/16

13

Example: Arranging Lunch

Example: Shared Whiteboard

1/10/16

14

1/10/16

Example: Parallel Make

Physical Clocks

e Can we assign every event in a distributed
system a unique wall clock time stamp?

* Local clocks aren’t perfect
— Crystals oscillate at slightly different frequencies
— Typical error is ~ 2 seconds/month

* Synchronize clocks across distributed system?
— Network messages involve delays
— Network message delays are variable

15

Physical Clocks

* Lets assume a network-attached GPS
— How close can we bound clocks across multiple
systems?
* Option 1: client polls the GPS server for current
time.
— How far off will the timestamp be when it arrives back
at the client?
* Option 2: repeatedly fetch the GPS time,
estimate relative rate of skew of the local clock

Logical Clocks
(Centralized implementation)

Send every message to a central arbiter, which
assigns an order for all messages.

Problems with centralization?

1/10/16

16

Space-Time Diagram

1/10/16

17

