1/12/16

Primary Backup

Tom Anderson

Last Time

* MapReduce
— Fault tolerance
— Discussion

* RPC
— At least once
— At most once
— Exactly once




Topics

* Primary/backup replication
— Example of state machine replication

 Lab 2 Hints

Primary/Backup

* Many clients, sending requests concurrently
to service

e Two server roles: primary, backup
— Which server is which changes due to failures

e Lab 2: viewservice defines which server is
primary, which is backup

1/12/16



1/12/16

Primary-Backup Goals

* A service that behaves like a single, always
available server:

— available: service still usable despite [some] server
and network failures

— correct: acts like a single server to clients
* Lab 2: key-value service
— Simple operations: Get, Put, PutHash

State Machine Replication

* Replicate state on a set of servers
* Apply operations (RPCs) in the same order on
each server
— view each replica as a state machine
— each replica starts in the same state
— applies all operations in the same order
— ->they end up in the same state

» Key assumption: operations are deterministic




Primary/Backup In Operation

Clients send operations to primary
— Put, PutHash, Get
Primary chooses the order of operations to apply

Primary forwards sequence of operations to
backup

Backup performs operations in same order (hot
standby)

— Or just saves log of operations (cold standby)
Primary replies to client
— After backup has saved the operation order

Challenges

Non-deterministic operations

— Examples? Solutions?

Network failures and partitions

State transfer between primary and backup

— after backup becomes primary, need a new
backup

There can be only one primary at a time

— Need to keep clients, primary, and backup in sync
as to who is primary and who is backup

1/12/16



View Service

View server decides who is primary and backup
— Clients and servers depend on the view server
— They do NOT decide on their own (why not?)
The tricky part:
— Only one primary at a time!
— But clients may not have gotten the message!
— Careful protocol design needed
View service assumed to never fail
— Fixedin Lab 3

Repair

* Primary fails

* View server declares new “view”, promotes
backup to primary

* View server promotes “idle” server as new
backup

* Primary initializes new backup's state
* Now ok if new primary fails

1/12/16



Example

View server maintains a sequence of "views”
— view #, primary, backup

1:S1S2
2:S2 -
3:S52S3

View Server

View server monitors server liveness
Each server periodically sends a Ping RPC to
view server

— "dead" if missed N Pings in a row

— "live" after single Ping
Can server be alive but declared “dead” by
viewserver? Why?

1/12/16



View Server

Any number of servers can Ping view server
— if more than two, the others are "idle" servers
If primary is dead
— new view with previous backup as primary
If backup is dead, or no backup
— new view with previously idle server as backup

OK to have a view with a primary and no backup
— Why?

Question

How can we ensure new primary has up-to-date
replica of state?

— only promote previous backup

— don't make a previously idle server the primary
(except at startup)

What if the backup hasn't had time to acquire
the state?

1/12/16



Avoid promoting a state-less backup?

1:51S2

S1 stops pinging viewserver
2:52S3

S2 *immediately* stops pinging
3:53-

Question

How does viewserver know if backup is up to
date?
— Primary must ack new view (once backup is up to
date)
— View server stays with current view until ack

— Even if primary has failed (or appears to have
failed)

1/12/16



Question

Can more than one server think it is primary at
the same time?

More Than One Primary

1:51,S2
— Network breaks, so viewserver thinks S1 dead
— But S1is still alive
2:S2, --
— But S1 alive and not aware of view #2, so S1 still
thinks it is primary
— AND S2 alive and thinks it is primary

 Called “split brain”

1/12/16



More Than One Primary

Can we ensure only one server acts as primary?
— Even though more than one may *think* it is primary
— Acts as = responds to client requests

1:51S2

2:S2 --

e S1still thinks it is primary

e S1 must forward operations to S2 (for backup!)
* S2thinks S2 is primary

* S2canreject S1's forwarded operations

Rules

1. Primary in view i must have been primary or
backup in view i-1

2. Primary must wait for backup to accept/execute
each request before doing operation and
replying to client

3. Non-backup must reject forwarded requests

— Backup accepts forwarded requests only if they are
in the current view

4. Non-primary must reject direct client requests

5. Every operation must be before or after state
transfer

1/12/16

10



Example

1:51,S52
— View server stops hearing Pings from S1
2:S2, --
— It may be a while before S2 hears about view #2
Before S2 hears about view #2:
— S1 can process ops from clients, S2 will accept forwarded ops

— S2 will reject ops from clients who have heard about view #2
[but trigger a fetch to get new view from view server]

After S2 hears:
— if S1 receives client op, it will forward but S2 will reject

— S1 will send error to client, client will ask view server for new
view

— Client will re-send op to S2

State Transfer

How does a new backup get the current state?
— e.g. the contents of the key/value store
— If S2is backup in view i, but was not in view i-1
— S2 asks primary to transfer the state

Rules for state transfer:
— every op must be either before or after state xfer
— if op before xfer, xfer must reflect op

— if xfer before op, primary forwards op after xfer
finishes

1/12/16

11



Progress

Are there cases when the protocol cannot make
forward progress?

Fast Reads

* Does the primary need to forward read (Get)
requests to the backup, or can it reply
directly?

1/12/16

12



Three Approaches To State Transfer
(Key-Value Store)

1. Transfer current k-v map

— Between operations! All RPCs appear to occur either before
or after the transfer.

— Recall that "at most once" means you need to save the
response you previously gave to an RPC. When backup takes
over, needs to act as if it was the primary.

— If each client has only one RPC outstanding at a time, state =
map + result of last RPC from each client.

2. State can be derived from an operation log: the sequence
of RPC's processed at the primary.

— Simpler, less efficient
— Current value of key is last value written in the log for that key
3. Transfer checkpoint plus log of recent changes to k-v map

Another Implementation Hint

In Section, transition diagram for the view
server for Lab 2a. What about Lab 2b?

— State transition diagram for primary?
— State transition diagram for backup?
— State transition diagram for client?

— All of the above plus the viewserver?

1/12/16

13



Another Implementation Hint

Behavior of a distributed system is the cross-
product of the states of the individual nodes

state at the clients

— state at the primary and backup

state at the view server

Transitions are message send/receive and local
events

Many possible paths are allowable -- depending on
which messages are delivered in which order, which
nodes do which actions

Lamport Clocks

Can we make sure everyone agrees on the same
order of events?

An issue if:

multiple clients, multiple servers
even if there are no failures

even if messages are delivered in order sent by each
client (“processor order”)

1/12/16

14



Facebook Storage System

Initially:
— afew front end web servers to do application logic
— asingle backend storage server
To scale, add more front ends, more back end servers:

— Each front end pulls data from multiple servers (e.g., one
for privacy settings, one for pictures).

— Do users see a consistent view?
Now add some intermediate caches:
— 100+ lookups per page
— 1B+ users: 1M+ front ends, 1M+ caches, 1M+ servers

Example: Arranging Lunch

1/12/16

15



Example: Shared Whiteboard

Example: Parallel Make

1/12/16

16



Physical Clocks

Can we assign every event in a distributed
system a unique wall clock time stamp?

Local clocks aren’t perfect

— Crystals oscillate at slightly different frequencies
— Typical error is ~ 2 seconds/month

Synchronize clocks across distributed system?
— Network messages involve delays

— Network message delays are variable

Physical Clocks

Lets assume a network-attached GPS

— How close can we bound clocks across multiple
systems?

Option 1: client polls the GPS server for current

time.

— How far off will the timestamp be when it arrives back
at the client?

Option 2: repeatedly fetch the GPS time,
estimate relative rate of skew of the local clock

1/12/16

17



Logical Clocks
(Centralized implementation)

Send every message to a central arbiter, which
assigns an order for all messages.

Problems with centralization?

Space-Time Diagram

1/12/16

18



