Memcache

Tom Anderson

QOutline

Last time:
Consistent hashing, Memcache intro

Today:
Memcache

2/12/16



Facebook

Scale by hashing to partitioned servers

Scale by caching

Scale by replicating popular keys

Scale by replicating clusters

Scale by replicating data centers

Scale By Caching: Memcache

Sharded key-value store
— Lookup: consistent hashing
— For very frequently used data -> replicate keys
— Caches in memory all or most of backend storage

Lookaside cache
— Keys, values assigned by app code
— Can store result of any computation

— Independent of backend storage architecture
(SQL, noSQL) or format

2/12/16



Lookaside Operation (Read)

Client needs key value

Client requests from memcache server

Server: If in cache, return it

If not in cache:

— Server returns error

— Client gets data from storage server

— Possibly an SQL query or complex computation
— Client stores data into memcache

Lookaside Operation (Write)

* Client changes a value that would invalidate a
memcache entry

— Could be an update to a key
— Could be an update to a table

— Could be an update to a value used to derive
some key value

* Client puts new data on storage server
 Client invalidates entry in memcache

2/12/16



Example
Thread A: Reader Thread B: Writer
Read cache Change database
If missing, Delete cache entry

Fetch from database
Store back to cache

Interleave any # of readers/writers

Example

Thread A: Reader Thread B: Writer
Change database
Read cache

Delete cache entry

2/12/16



Memcache Consistency

Is the lookaside protocol eventually consistent?

Example

A: Read cache, miss
A: Read database

B: change database
B: Delete memcache entry

A: Store back to cache

2/12/16



Lookaside With Leases

Goals:
— Reduce (eliminate?) per-key inconsistencies
— Reduce cache miss swarms
On a read miss:
— leave a marker in the cache (fetch in progress)
— return timestamp
— check timestamp when filling the cache

— if timestamp changed => value (likely) changed: don't
overwrite

If another thread read misses:
— find marker and wait for update (retry later)

Question

What if web server crashes while holding lease?

2/12/16



Question

Is lookaside with leases linearizable?

Example

Thread A: Reader Thread B: Writer
Change database
Read cache

Delete cache entry

2/12/16



Question

Is this eventually consistent?

Example

Thread A: Reader Thread B: Writer
Change database
Read cache

CRASH!
(before Delete cache entry)

2/12/16



Question

Linearizable?
— read misses obtain lease
— writes obtain lease (prevent reads during update)

Except that
— FB replicates popular keys (need lease on each
copy?)
— FB bypasses the cache on pkt loss

— memcache server might fail, or appear to fail by
being slow (e.g., to some nodes, but not others)

Latency Optimizations

Concurrent lookups

— Issue many lookups concurrently

— Prioritize those that have chained dependencies
Batching

— Batch multiple requests (e.g., for different end
users) to the same memcache server

Incast control:

— Limit concurrency to avoid collisions among RPC
responses

2/12/16



More Optimizations

Return stale data to web server if lease is held

— No guarantee that concurrent requests returning
stale data will be consistent with each other

Partitioned memory pools
— Infrequently accessed, expensive to recompute
— Frequently accessed, cheap to recompute
— If mixed, frequent accesses will evict all others

Key replication when access rate is too high for
one server

Gutter Cache

When a memcache server fails, flood of
requests to fetch data from storage layer

— Slows users needing any key on failed server
— Slows other users due to storage server
contention
Solution: backup (gutter) cache

— Time-to-live invalidation (ok if clients disagree as
to whether memcache server is still alive)

— Backup cache also suggested in Yegge

2/12/16

10



Scaling Within a Cluster

What happens as we increase the number of
memcache servers to handle more load?

— Batching less effective
— More replication of popular servers
— More failures hit gutter cache

Multi-Cluster Scaling

Multiple independent clusters within data center
— Each with front-ends, memcache servers
— Data replicated in the caches in each partition
— Shared storage backend
Web server driven invalidation?
— need to invalidate every cluster on every update

Instead: mcsqueal

2/12/16

11



mcsqueal

Web servers talk to local memcache. On update:
— Acquire local lease
— Tell storage layer which keys to invalidate
— Update local memcache

Storage layer sends invalidations to other clusters
— Scan database log for updates/invalidations
— Batch invalidations to each cluster (mcrouter)

— Forward/batch invalidations to remote memcache
servers

Per-Cluster vs. Multi-Cluster

Per-cluster pools of memcache servers

— Frequently accessed data

— Inexpensive to compute data

— Lower latency, less efficient use of memory
Shared multi-cluster pools

— infrequently accessed

— hard to compute data

— Higher bandwidth on oversubscribed clos network

2/12/16

12



2/12/16

Cold Start Consistency

During new cluster startup, on cache miss:

— Web frontend checks remote memcache cluster
for data

— Puts fetched data into local pool
— Subsequent requests fetch from local pool

Example

B: change database
B: queue remote invalidation
B: Delete memcache entry
A: Local cache miss
A: Read remote cluster
A: Put data in local cache
Apply remote invalidation

Solution: prevent cache fills within 2 seconds of delete

13



2/12/16

Multi-Region Scaling

Storage layer consistency
— Storage at one data center designated as primary
— All updates applied at primary
— Updates propagated to other data centers

— Invalidations to memcache layer at delayed until
after update reaches that site

However
— Frontends may read stale data
— Even data that they just wrote

Multi-Region Consistency

To perform an update to key:
— put marker into local region
— Send write to primary region
— Delete local copy
On a cache miss:
— Check if local marker
— If so, fetch data from primary region
— Fill local copy

14



Data Centers without Data

Tradeoff in increasing number of data centers
— Lower latency when data near clients
— More consistency overhead
— More opportunity for inconsistency
Mini-data centers
— Front end web servers
— Memcache servers
— No backend storage: remote access for cache misses

2/12/16

15



