Memcache

Tom Anderson

QOutline

Last time:
Service Oriented Architecture (SOA)

Today:
Memcache

2/10/16



Facebook’s Scaling Problem

« Rapidly increasing user base
— Small initial user base
— 2xevery 9 months
— 2013: 1B users globally

» Users read/update many times per day
— Increasingly intensive app logic per user
— 2x 1/0 every 4-6 months

* Infrastructure has to keep pace

Goals

Scale

— Bzillions of users

— Every user on FB all the time
Performance

— Low latency for every user everywhere
Fault tolerance

— Scale implies failures
Consistency model:

— “Best effort eventual consistency”

2/10/16



Strategy

Adapt off the shelf components where possible
Application logic needs to support rapid change
Speed of adding new features >> efficient operation
Support third party apps (SOA)
Fix as you go
— no overarching plan

Rule of thumb from the growth of the Internet:
— Every order of magnitude requires a rethink

Scaling

A few servers
* Many servers

An entire data center

Many data centers

Each step 10-100x previous one

2/10/16



Workload

Each user’s page is unique
— draws on events posted by other users
Users not in cliques
— For the most part
User popularity is zipf
— Some user posts affect very large #'s of other pages
— Most affect a much smaller number

Question

Will clustering users be likely to work?

2/10/16



Workload

Many small lookups

Many dependencies

Low spatial locality: all to all

App logic: many diffuse, chained reads
— latency of each read is crucial

Much smaller update rate

— still large in absolute terms

Data Center Network

» Data center capacity is non-uniform

— Oversubscribed folded Clos built out of switches
with 10-40 ports

— Maintaining locality is important

2/10/16



Facebook Three Layer Architecture

* Application front end
— Stateless, rapidly changing program logic
— If app server fails, redirect client to new app server
* Memcache
— Lookaside key-value cache
— Keys defined by app logic
* Fault tolerant storage backend
— Stateful
— Careful engineering to provide safety and performance
— Both SQL and NoSQL

Scale By Hashing: Shards

Hash users to front end web servers
Hash keys to memcache servers
Hash files to SQL servers

App code is all to all

— agiven user will pull data from a large # of
memcache and storage servers

2/10/16



2/10/16

Questions

What happens if a front end web server goes
down?

— How do we reassign its work?

What happens when we add a new front end
web server?
— How do we reassign work so that it gets its share?

Regular Hashing?

Every failure, every added node
— Changes number of servers
— Changes # of hash entries
— Changes work assignment

Want work assignment to stay (mostly) the
same after a failure or resume

— At front ends, memcache layer, storage




Consistent Hashing

Hash clients/keys and servers onto the same ID

space

Sort all the servers by their hash value H(Si) < H(Sj)
— Renumber so ... < H(Si-1) < H(Si) < H(Si+1) < ...

Server Si’s workload:
All clients/keys, st H(Si) < H(key) < H(Si+1)

Questions

How unbalanced is regular hashing, on average?
How unbalanced is consistent hashing?
If workload is uniform random?

If workload is zipf?

2/10/16



Consistent Hashing Fault Tolerance

If Si fails, assign its keys to server Si-1

— How does load balance change when remove a
node?

If new Sj hashes to value between Si, Si+1:
assign it keys between H(Sj), H(Si+1)
— How does load balance change when add a
node?

Consistent Hashing Optimization

Create 100 “virtual servers” for each server
Assign keys based on hash of virtual server ID

Reduces load imbalance by ~10x

Speeds reconfiguration after a failure

— Workload for each “failed” virtual node spread to
a different peer

2/10/16



Scale By Caching: Memcache

Sharded key-value store

— Lookup: consistent hashing

— For very frequently used data -> replicate keys

— Caches in memory all or most of backend storage
Lookaside cache

— Keys, values assigned by app code

— Can store result of any computation

— Independent of backend storage architecture
(SsQL, noSQL) or format

Lookaside Operation (Read)

Client needs key value

Client requests from memcache server

Server: If in cache, return it

If not in cache:

— Server returns error

— Client gets data from storage server

— Possibly an SQL query or complex computation
— Client stores data into memcache

2/10/16

10



Question

What if swarm of users read same key at the
same time?

Lookaside Operation (Write)

* Client changes a value that would invalidate a
memcache entry

— Could be an update to a key
— Could be an update to a table

— Could be an update to a value used to derive
some key value

* Client puts new data on storage server
 Client invalidates entry in memcache

2/10/16

11



2/10/16

Memcache Consistency

Is memcache linearizable?

Example
Thread A: Reader Thread B: Writer
Read cache Change database
If missing, Delete cache entry

Fetch from database
Store back to cache

Interleave any # of readers/writers

12



Example

Thread A: Reader Thread B: Writer
Change database
Read cache

Delete cache entry

Memcache Consistency

What if we delete cache entry, then change
database?

2/10/16

13



Example

Thread A: Reader Thread B: Writer

Delete cache entry
Read cache
Fetch data from database

Change database

Store fetched data to
memcache

Memcache Consistency

Is memcache linearizable considering only the
gets/puts to a single key?

2/10/16

14



Example

* A: Read cache
* A: Read database

* B: change database
* B: Delete entry

e A: Store back to cache

Lookaside With Leases

Goals:
— Reduce (eliminate?) per-key inconsistencies
— Reduce cache miss swarms
On a read miss:
— leave a marker in the cache (fetch in progress)
— return timestamp
— check timestamp when filling the cache

— if changed means value has (likely) changed: don't
overwrite

If another thread read misses:
— find marker and wait for update (retry later)

2/10/16

15



Question

What if web server crashes while holding lease?

Question

Is Facebook lookaside with leases linearizable
for operations to a single key?

2/10/16

16



