
L8: Memory Models
CSE 452 Winter 2016

“There are only two hard things in computer 
science: cache invalidation and naming things.”  
- Phil Karlton



Caching is the other half of 
distributed systems

• Option #1: Go to the data (RPC) 

• Problems: server has to process all operations, 
latency from going to server on every operation, 
can’t run operations if the server isn’t available 

• Option #2: Bring the data to you (caching) 

• Problems: how to keep the data synchronized 
with the server, what if there is more than one 
cache



Example: Dropbox, ideally
Client 1 Client 2

write(f,”A”)

write(f, “B”)

f = []

f = [A]

f = [A,B]



Example: Dropbox, real-life
Client 1 Client 2

write(f,“A”)

write(f,”B”)

f = []

f = [A]

f = [A,B]

cache cache



Some definitions
• Coherence/consistency models: Does the reality match the ideal? 

• Coherence = guarantee for single object 

• Consistency = guarantee for multiple objects across the system 

• Caveat: literature is not consistent about this terminology! Naming is hard! 

• Anomaly: a sequence of operations leading to a state that cannot occur in the ideal system 

• Some models: 

• weak consistency: doesn't match the ideal system, could have anomalies 

• eventual consistency: temporary anomalies, but over time (if no further modifications are 
made), the system will converge 

• sequential consistency/serializable: behaves like the idea system for applications but might 
not matching external user expectations 

• linearizable: behaves like a single system to users



Consistency Models



Defining Consistency 
Models

Client 1 Client 2

write(f,A)

write(f,B)ok

ok
read(f)

?

read(f)

?



Linearizability
Client 1 Client 2

write(f,A)

write(f,B)

f = {}

f = {a}

ok

ok
read(f)

[A,B]

read(f)

[A,B]



Serializability
Client 1 Client 2

write(f,A)

write(f,B)

f = {}

f = {a}

ok

ok
read(f)

[B,A]

read(f)

[B,A]



Weak Consistency
Client 1 Client 2

write(f,A)

write(f,B)

f = {}

f = {a}

ok

ok
read(f)

[B,A]

read(f)

[A,B]



Eventual Consistency
Client 1 Client 2

write(f,A)

write(f,B)

f = {}

f = {a}

ok

ok
read(f)

[A]

read(f)

[B]



Maintaining 
Consistency



Example: Single client
Client 1 Client 2

write(f,“A”)
f = []

cache cache

f = [A]ok

read(f)

[]



Example: Multiple clients
Client 1 Client 2

write(f,“A”) f = []

cache cache

f = [A]ok

write(f,“B”)

f = [B] ok

f = [A]

f = [B]



Idea: Cache Invalidations
Client 1 Client 2

write(f,“A”) f = []

cache cache

f = [A]

ok

f=[]

f = [A]

write(f,”B”)

f = [A]
okf = [A,B]



Cache invalidations

• Need to lock the store and not allow any updates 
before invalidation to ensure strong consistency 

• Slow, especially in a distributed system 

• Sometimes practical on processors where caches 
share a bus, but even modern processors do not 
provide strong consistency



Idea: Leases
Client 1 Client 2

write(f,“A”) f = []

cache cache

ok
write(f,”B”)

f = [A]

ok

Hold 
write 
lease get_lease(f)

f = [A,B]

f = [A]



Cache invalidations

• Need to revoke all read leases before acquiring a 
write lease 

• Requires all to all communication 

• Again can be practical on processors where 
caches can snoop on a bus, but even modern 
processors do not provide strong consistency



Strong vs. Weak consistency
• Strong is obviously easier for programmers to use 

but performance can be bad 

• What about when you can’t reach some clients for 
invalidation or to revoke leases? Do you wait for 
them? 

• CAP theorem deals with exactly the case where 
some clients are unreachable: The system can either 
give up (A)vailability by blocking or (C)onsistency by 
going ahead without reaching some of the clients



Maintaining Consistency 
in systems with sharding



Example: Sharding
Client 1 Client 2

write(f,“A”)

f=[A]ok

if g = [X]  
append(f,g)

f=[]

g=[X]
write(g,“X”)

g=[]

g=[X]

ok
f=[X]

f=[]



Idea: Blocking writes
Client 1 Client 2

write(f,“A”)

f=[A]
ok

if g = [X]  
append(f,g)g=[X]

write(g,“X”)

g=[]

f=[A]

ok

f=[]

f=[A,X]



Processor Ordering
• Linearizability and sequential consistency guarantee 

processor ordering (operations at one client execute in 
the order they are issued). 

• Re-ordering can happen for many reasons: out-of-order 
execution, network re-ordering 

• Again, it is easier to reason about but more expensive 

• Another option for this example in a distributed system 
is transactions to guarantee atomicity: if the write(g) is 
visible then so is the write(f), otherwise neither


