| 8: Memory Models

CSE 452 Winter 2016

“There are only two hard things in computer
science: cache invalidation and naming things.”
- Phil Karlton

Caching is the other half of

distributed systems
 Option #1: Go to the data (RPC)

* Problems: server has to process all operations,
latency from going to server on every operation,
can't run operations if the server isn't available

e Option #2: Bring the data to you (caching)
* Problems: how to keep the data synchronized

with the server, what if there is more than one
cache

Example: Dropbox, ideally

Client 1 Client 2

Write(f,"A") f —_ []

Example: Dropbox, real-lite
Client 1 Client 2

=] cache = cacneﬁ

. £ =
write(f,“A") []
Write(f, IIB,,

f = [A]

f = [A,B]

Some definitions

* Coherence/consistency models: Does the reality match the ideal?

e Coherence = guarantee for single object

* Consistency = guarantee for multiple objects across the system

* Caveat: literature is not consistent about this terminology! Naming is hard!

 Anomaly: a sequence of operations leading to a state that cannot occur in the ideal system

e Some models:

weak consistency: doesn't match the ideal system, could have anomalies

eventual consistency: temporary anomalies, but over time (if no further modifications are
made), the system will converge

sequential consistency/serializable: behaves like the idea system for applications but might
not matching external user expectations

linearizable: behaves like a single system to users

Consistency Models

Defining Consistency
Models

Client 1 Client 2

| inearizabllity

Client 1 Client 2

write(f,B

write(f,A)

Serializability

Client 1 Client 2

write(f,A)

write(f,B

Weak Consistency

Client 1 Client 2

write(f,A)

Eventual Consistency

Client 1 Client 2

write(f,A)

Maintaining
Consistency

Example: Single client

Client 1 Client 2

Example: Multiple clients

Client 1 Client 2

l:l cache /’3} Caﬂhﬂﬁ
i - unn

|dea: Cache Invalidations

Client 1 Client 2
l:l cache @ cacneﬁ
writel(£,“A") £ = []

f = [A]

£=[]
jﬁ?/'...........'ffz .

write(f,”B")

f = [A]
f = [A,B]|l_ok

Cache invalidations

* Need to lock the store and not allow any updates
before invalidation to ensure strong consistency

* Slow, especially in a distributed system

e Sometimes practical on processors where caches
share a bus, but even modern processors do not
provide strong consistency

|dea: Leases

Client 1 Client 2

l:l cache | E Gaﬂhﬂﬁ

Write(fl "B"]

Cache invalidations

* Need to revoke all read leases before acquiring a
write lease

* Requires all to all communication

* Again can be practical on processors where
caches can snoop on a bus, but even modern
processors do not provide strong consistency

Strong vs. Weak consistency

e Strong is obviously easier for programmers to use
but performance can be bad

* What about when you can'’t reach some clients for
invalidation or to revoke leases” Do you wait for
them??

 CAP theorem deals with exactly the case where
some clients are unreachable: The system can either
give up (A)vailability by blocking or (C)onsistency by
going ahead without reaching some of the clients

Maintaining Consistency
N systems with sharding

Example: Sharding

Client 1 Client 2
write(£f,“A" £t=[]1 p=[1]
write(g,“X" if g = [X]
g=[X] 3

ppend(f,qg)

g=[X]

p—| f=[]

ok f=[A]

f=[X
- [X]

|[dea: Blocking writes

Client 1 Client 2

£=[] | 9=I1]
ok F=[A]
write(g,“X")
if g = [X]
ok g=[x7 | 2pPend(f,g)
f=[A]

f=[A,X]

Processor Ordering

_inearizability and sequential consistency guarantee
orocessor ordering (operations at one client execute in
the order they are issued).

Re-ordering can happen for many reasons: out-of-order
execution, network re-ordering

Again, it Is easier to reason about but more expensive

Another option for this example in a distributed system
'S transactions to guarantee atomicity: if the write(Q) Is
visible then so is the write(f), otherwise neither

