CSE 452/M552
Distributed Systems

Tom Anderson

Course Overload Information

tinyurl.com/hjl3tpj

1/3/16

How This Course Fits in the
UW CSE Curriculum

* CSE 333: Systems Programming
— Project experience in C/C++
— How to use the operating system interface
* CSE 451: Operating Systems
— How to make a single computer work reliably
— How an operating system works internally
e CSE 452: Distributed Systems

— How to make a set of computers work reliably and
efficiently, despite failures of some nodes

Closely Related Courses

* CSE 461: Computer Communication Networks
— How to connect computers together
— Networks are a type of distributed system

* CSE 444: Database System Internals

— How to store and query (large) data, reliably and
efficiently

— Primary focus is single node databases

* CSE 550: Systems For All
— One quarter firehose version of 451/452/461/444
— Primarily for PhD students

1/3/16

A Thought Experiment

Suppose there is a group of people, two of whom
have green dots on their foreheads.

* Without using a mirror or directly asking, can
anyone tell if they themselves have a green dot?

* What if | say to everyone: someone has a green
dot

— Something everyone already knows!

There’s a difference between what you know
and what you know others know.

1/3/16

What is a Distributed System?

* Multiple interconnected computers that
cooperate to provide some service

* Examples?

Why Distributed Systems?

e Conquer geographic separation

— Facebook and Google customers span the planet
Build more reliable systems

— Out of unreliable components

Aggregate systems for higher capacity

— Aggregate cycles, memory, disks, network
bandwidth

Customize computers for specific tasks
— Ex: email server, backup server

1/3/16

The Distributed System Challenge

Do useful work in the presence of partial failures
with reasonable performance.

A Thought Experiment

Consider a Facebook data center
— e.g., Pineville Oregon
About 10x the size of the Allen Center

Approx $1B to construct (buildings and
contents)

Approx 30MW power draw

Sidebar: How do you do cooling?

1/3/16

Data Center Layout

Pineville Data Center Contents
(approx)
200K+ servers
500K+ disks
10K network switches

300K+ network cables
User data is spread across multiple data centers

What is the likelihood that all of the components
are correctly functioning at any instant in time?

1/3/16

MTTF/MTTR

Mean Time to Failure/Mean Time to Repair

Disk failures (not reboots) per year ~ 2-4%
— At data center scale, that’s about 2/hour.
— It takes about an hour to restore a 1TB disk.

Suppose each server reboots once/month
— 30 seconds to reboot => 5 mins/year offline
— 500K minutes in a year => 2 rebooting (on average)

We’'ve Made Some Progress

Leslie Lamport, circa 1990:

“A distributed system is one where you can’t get
your work done because some machine you’ve
never heard of is broken.”

1/3/16

We’'ve Made Some Progress

Today a distributed system is one where you can
get your work done (almost always):

wherever you are

whenever you want

even if parts of the system aren’t working

no matter how many other people are using it
as if it was a single dedicated system just for you
that (almost) never fails

Yet Another Thought Experiment:

Local vs. Remote Operations

* How long does it take to do a simple
procedure call on a modern server?

 How long does it take to do the same
operation on a different server in the same
data center?

* On a server in a remote data center?
— Speed of light is ~ 1ns/foot

1/3/16

Why Is DS So Hard?

* System design

— Partitioning of responsibilities: what should client do,
what should server do? Which servers should do what?

* Failures are endemic, partial and ambiguous
— If the server doesn’t reply, how do you tell if it is (a) the
network, (b) the server, or c) neither: they are both just
being slow?
* Concurrency and consistency
— Distributed state, replicated state, caching
— How do we keep this state consistent?

Why Is DS So Hard?

* Performance

— Generating a single FB page involves calls to hundreds
of different machines

— Performance can be variable and unpredictable

— Tail latency: only as fast as the slowest machine
* Implementation and testing

— Nearly impossible to test/reproduce all failure cases
* Security

— Adversary can silently compromise machines and
manipulate messages

1/3/16

Properties We Want
(Google Paper)

Fault-Tolerant: It can recover from component
failures without performing incorrect actions.
(Lab 2)

Highly Available: It can restore operations,
permitting it to resume providing services even
when some components have failed. (Lab 3)

Scalable: It can operate correctly even as some
aspect of the system is scaled to a larger size.
(Lab 4)

Recoverable: Failed components can restart
themselves and rejoin the system, after the cause
of failure has been repaired. (Lab 5)

Other Properties We Want
(Google Paper)

Consistent: The system can coordinate actions by
multiple components often in the presence of
concurrency and failure. This underlies the ability
of a distributed system to act like a non-
distributed system. (Labs 2-5)

Predictable Performance: The ability to provide
desired responsiveness in a timely manner.
(Week 9)

Secure: The system authenticates access to data
and services (Week 10)

1/3/16

10

Project

* Build an distributed key-value store

— To clients, a distributed hash table

— Stores arbitrary content per key (NoSQL)
* With:

— Scalable to arbitrary size

— Fault tolerant (continues to operate despite node
and network failures)

— Consistent (correct regardless of failures)
— Timely progress (under certain conditions)
— Failed nodes can recover

Project Management

Lab 1 (mapreduce) due next Wednesday

— Section Thursday: introduction to Go

Labs 2-5 (key-value store)

Think and plan very carefully before writing
any code.

OK to ask for help

— Irene and Ray have done the project (I've done
parts of it)

— Also ok to ask other students for advice

1/3/16

11

Some Career Advice

* Create a portfolio

— Course projects

* Support building a tool to make it easy to share gitlab
projects with employers

* Edits to public source code projects
* To employers, code quality >> grades
— Design, structure, tests, comments, ...
— Create a portfolio

Project Rules

* OK
— Consult with us or other students in the class

* Not OK
— Look at solutions posted by people not in the class
— Cut and paste code

1/3/16

12

Readings and Blogs

* There exists no (even partially) adequate
distributed systems textbook

* Instead, 14 research papers
— How do you read a research paper?

* Blog

— For seven of the papers, write a short (2-3
sentence) unique thought about the paper to the
discussion board

Problem Set

* One problem set, available now

— Equivalent to a take home, open book final
— Done individually

1/3/16

13

The Science of Computers in the
Classroom

 Don’t

MapReduce

A programming model to help unsophisticated
programmers use a data center without thinking
about failures and distribution.

— Popular distributed programming framework

— Many descendants frameworks
Lab 1:

— Help you get up to speed on Go and distributed
programming

— Exposure to some fault tolerance
— Motivation for better fault tolerance in later labs

1/3/16

14

MapReduce Computational Model
(Document Processing)

For each key (k1, v1), compute
map (k1,v1) = list(k2,v2)

For each key (k2, list(v2), compute
reduce (k2,list(v2)) = list(v2)

User writes a map function and reduce function

Framework takes care of parallelism,
distribution, and fault tolerance

MapReduce Steps

1. Split document into set of <k1, v1> pairs

2. Run Map(k1, v1) on each element of each
split -> set of <k2, v2> pairs

3. Coalesce results from each split into a list for
each key

4. Run Reduce(k2, list(v2)) -> list(v2)
5. Merge result

1/3/16

15

