1/17/16

Lamport Clocks

Tom Anderson

Last Time

* Primary/backup

— System behaves as if it is a single server that
(almost) never fails.

* Limitations
— All requests go through the primary
— System can stall if failure during view change




Lamport Clocks

Can we make sure everyone agrees on the same
order of events?

— When impractical to have one node mediate every
request

Assume (for now) there are no failures

— Fixwith Lab 3
Assume messages are delivered in order sent by
each client (“processor order”)

— Ex:include a per-client sequence number

Example: Parallel Make

1/17/16



Physical Clocks

Can we assign every event in a distributed
system a unique wall clock time stamp?

Local clocks aren’t perfect

— Crystals oscillate at slightly different frequencies
— Typical error is ~ 2 seconds/month

Synchronize clocks across distributed system?
— Network messages involve delays

— Network message delays are variable

Physical Clocks

Lets assume a network-attached GPS

— How close can we bound clocks across multiple
systems?

Option 1: client polls the GPS server for current

time.

— How far off will the timestamp be when it arrives back
at the client?

Option 2: repeatedly fetch the GPS time,
estimate relative rate of skew of the local clock

1/17/16



Logical Clocks
(Centralized implementation)

Send every message to a central arbiter, which
assigns an order for all messages.

Problems with centralization?

Space-Time Diagram

1/17/16



Happens Before

Happens before: a->b, ie, b could be caused by a

1. Ifaand b are in same process, a occurs before b
2. Send occurs before receive
3. Transitivity

Logical clock C: Cj is the value of clock C for process j
st if "a happened before b" then C(a) < C(b)

Logical Clock Update

IR1: increment on every event within a process

IR2: put current clock value Ci in each message
sent by process i

On receipt at process j, Cj = max(current Cj, Ci + 1)

If apply tiebreaking rule, then we get a total order
consistent with partial order.

1/17/16



Example

Globally Ordered Message Delivery

Proposed rule: Always deliver packets
everywhere in the same total order, defined by
Lamport clock.

Q: When is it ok to act on a message that
arrives?

— Can you know that you have received all msgs
that might ever arrive with earlier timestamp?

1/17/16



Updated Rule

Proposed rule: Always deliver packets
everywhere in the same total order, defined by
Lamport clock.

If receive a message with time T, ping neighbors
to get their current time (and/or any messages
that are before T).

Eliminating Waiting

Can we apply messages without waiting to see if
an “earlier” message will arrive?

If temporary inconsistency is ok:
— Keep timestamped log of all operations
— Apply operations in timestamp order.

— Ifan "older" update arrives later, insert in log and
recompute.

1/17/16



Vector Clocks

Each process keeps an array of timestamps, VC|i]
V(C[i] is the latest event | know from process i
Revised update rule, at node i:
— Pass vector clock in each message
— Update local clock on message receipt (VC[i]++)
—for all i, VC[j] = max (VCI[j], msg’s VCIj])
VC defines partial order of events

— don't process an event until you’ve seen all prior
events from that process

Vector Clocks

VC[i] = the latest event I've seen from process i

VC defines partial order of events

— don't process an event until you’ve seen all prior
events (you might receive) from that process

1/17/16



1/17/16

Consistent Snapshot

* Consistent distributed state: one where all events
that could have caused an event E are included

— Even if E happens on one node, and (potentially) causal
events happens on other nodes

* Snapshot algorithm
— Snapshot one node
— Forward snapshot request to neighbors

— Process snapshot iff received all events that “happen
before” the snapshot request, and then forward

Example




Using Logical Clocks

Can we use logical clocks to implement
distributed mutual exclusion?

— Example of state machine replication

Correctness:

—one at a time
— everyone in order of request

— Liveness: (if every holder releases lock) eventually
requester gets the lock

Logical Clocks for Mutual Exclusion

Every message timestamped with value of logical clock.

1.
2.

To request lock, multicast request Tm to everyone

If get a lock request message, put Tm on local queue, ack
(once it is ack'ed from everyone, request is in every queue)
To release the lock, remove request from local queue,
multicast release message

If get release message, remove that request from local
queue

Process i gets lock if its request < everyone else's, and none
earlier can arrive

— Process i has seen a later timestamp from everyone else

1/17/16

10



Example

Memory

1/17/16

11



Facebook Storage System

Initially:
— afew front end web servers to do application logic
— asingle backend storage server
To scale, add more front ends, more back end servers:

— Each front end pulls data from multiple servers (e.g., one
for privacy settings, one for pictures).

— Do users see a consistent view?
Now add some intermediate caches:
— 100+ lookups per page
— 1B+ users: 1M+ front ends, 1M+ caches, 1M+ servers

Facebook Architecture

1/17/16

12



1/17/16

Memory Models

* In a distributed system, we may have
— Multiple storage shards (partitions)
— Multiple cache copies of any stored item
* Memory behavior affects app behavior
— Memory implementation affects memory behavior

Strong Memory Models

* Linearizable
— All operations occur in a serial order
— Consistent with processor order
— During period of time when op was pending

* Serializable/sequentially consistent

— Appear as if all operations occur in linearizable
order, to the application program

— Allows compiler optimization to reorder ops

13



Weaker Memory Models

* Eventually consistent

— All observers eventually agree on the system state
* Causal ordering

— All operations respect causal ordering

— May not be eventually consistent!
* Weakly consistent

— Might be consistent

Database Consistency

* Snapshot consistency
— Writes occur in the present
— Reads may occur in the past

— Transactions (group of reads) must be at some
consistent state (in the past)

e Even weaker reads
— Semantics are implementation specific
— Usually for performance optimization
— Hard to know if app behavior depends on semantics

1/17/16

14



