Chubby and BigTable

Tom Anderson
(based on slides from Dan Ports)

QOutline

Last time:
— Memcache: Facebook caching layer

Today/Friday/Monday:
— Chubby: coordination service
— BigTable: scalable storage of structured data
— GFS: large-scale storage for bulk data

2/18/16

Impact

Chubby/BigTable/GFS were the basis of Google’s

storage stack
— Each 10+ years old
— major changes in design & workloads since then

Inspired related projects at Microsoft, Amazon, ...

Open-source versions:

— GFS -> HDFS

— BigTable -> HBase, Cassandra, etc
— Chubby -> ZooKeeper

Chubby

One of the first distributed coordination services

Goal: allow client apps to synchronize and manage
dynamic configuration state

— A highly available view service for Lab 2
— Find the BigTable directory
— Select a GFS master

Internally: Paxos-replicated state machine

2/18/16

2/18/16

Chubby History

* Replace ad hoc solutions to coordination

 Similar problem at many companies

— Chubby at Google
— Distributed lock service at Amazon

— Zookeeper for open source
* Paxos is well-known correct answer
— Chubby provides Paxos as a service to apps

Chubby Interface

* like a simple file system

* hierarchical directory structure: /Is/cell/app/file
—files are small: ~1KB

* Open afile, then:
— GetContents, SetContents, Delete
—locking: Acquire, TryAcquire, Release

—sequencers: Get/Set/CheckSequencer

Example: Primary Election

X = Open(“/ls/cell/service/primary")

if (TryAcquire(x) == success) {

// I'm the primary, tell everyone
SetContents(x, my-address)

} else {

// I'm not the primary, find out who is
primary = GetContents(x)
// also set up notifications
// in case the primary changes

Why this interface?

* Why not, say, a Paxos consensus libray?
* Developers do not know how to use Paxos

* Want to advertise results outside of the system
e.g., let all clients know where to find BigTable
root, not just the replicas of the master

* Consensus as a service, not a library

2/18/16

2/18/16

Implementation

client | chubby|
appli:a::c::i library [~=-._

Replicated service
using Paxos to
implement
fault-tolerant log

lient | clubby] " |)|

application! hbrary
H
i

chiant processes

Figure 1: System structure

What About Performance?

e Chubby is not a high-performance system!
* Paxos implementation: < 1000 ops/sec

* Initial version: needed to handle
~2000-5000 RPC/s

* Scale by adding nodes to Paxos group?

2/18/16

Multi-Paxos

request: [throughput:

) : |bottleneck replica processes 2n msgs
Client . pica p : 9

Leader
ReplicaQ

Replica /.

Replica Lo
< >
@ency: 4 message delays)

Paxos Performance Optimizations

Batching

Partitioning
* Leases

Caching
* Proxies
Other ideas?

Batching and Partitioning

* Batching
— Have leader accumulate requests from many clients
— Run one round of Paxos to add them all to the log
— Much higher throughput, somewhat higher latency
* Partitioning
— Run multiple Paxos groups to spread load

— Each replica will be a leader in some, follower in
others

— Very common in practice

Leases

* In Paxos (and lab 2), the primary can’t unilaterally
respond to requests, including reads

* Usual answer: use coordination (Paxos) on every
request, including reads

* Common optimization: give the leader a lease
for ~10 seconds, renewable

* Leader can process reads alone, if holding lease

* What happens when the leader changes?

2/18/16

Caching

* What does Chubby cache?
— file data, metadata — including absence of file

* Client maintains local cache

* Master keeps a list of which clients might have
each file cached

* Master sends invalidations on update
— not the new version — why?

* Cache entries have leases: expire automatically
after a few seconds

Proxies

e Most of the master’s load turns out to be
keeping track of clients

— keep-alive messages to make sure they haven’t
failed

—invalidating cache entries

* Optimization: connect groups of clients through a
proxy

— Proxy keeps track of which ones are alive and who
needs invalidations

2/18/16

Surprising use case

“Even though Chubby was designed
as a lock service, we found that its
most popular use was as a name
server.”

e.g., use Chubby instead of DNS to track
hostnames for each participant in a MapReduce

DNS vs. Chubby

DNS purely time-based caching: entries expire
after N seconds

— If too high (1 day): too slow to update;
if too low (60 seconds): caching doesn’t help!

* Chubby: server invalidates clients when needed
—much better for infrequently-updated items

* Could we replace DNS with Chubby everywhere?

2/18/16

Client Failure

* Clients have a persistent connection to
Chubby

* Need to acknowledge it with periodic keep-
alives (~10 seconds)

* If none received, Chubby declares client dead,
closes its files, drops any locks it holds,
stops tracking its cache entries, etc

Master Failure

* From client’s perspective:

— if haven’t heard from the master,
tell app session is in jeopardy;
clear cache, client operations have to wait

— if still no response in grace period (~45 sec),
give up, assume Chubby has failed
(what does the app have to do?)

2/18/16

10

Master Failure

Run a Paxos round to elect a new master
Increment a master epoch number (view number!)

New master receives log of old operations
committed by primary (from backups)

—rebuild state: which clients have which files open,
what’s in each file, who holds which locks, etc

Wait for old master’s lease to expire

Performance

~50k clients per cell

~22k files — majority are open at a time
most less than 1k; all less than 256k

2K RPCs/sec
— but 93% are keep-alives, so caching, leases help!
— most of the rest are reads, so master leases help

— < 0.07% are modifications!

2/18/16

11

“Readers will be unsurprised to learn that the fail-
over code, which is exercised far less often than
other parts of the system, has been a rich source of
interesting bugs.”

“A related problem is the lack of
performance advice in most software
documentation. A module written by one
team may be reused a year later by
another team with disastrous results.”

2/18/16

12

BigTable

* Key-value store for (semi)-structured versioned data
— e.g., URL -> contents, metadata, links

— e.g., user > preferences, recent queries

* Very large scale!
— capacity: 100 billion pages * 10 versions => 20PB
— throughput: 100M users, millions of queries/sec

— latency: a few milliseconds per lookup

Why Not Use a Commercial Database?

* Scale is too large, and/or cost too high

* Low-level storage optimizations needed
— BigTable model exposes locality, performance

— Traditional DBs try to hide this

e Can remove “unnecessary” features: secondary
indexes, multirow transactions, integrity
constraints

2/18/16

13

Key Ideas

Unstructured key-value table data

— No need for having a schema in advance

— instead create columns when needed
Versioned data, with key-specific garbage collection
Cluster data used together on same tablet

Instead of consistent hashing, reconfigure tablet
boundaries for load balancing

Tablets for indexing into key space
Efficient updates using log structure (store deltas)

Data Model: Key-value++

* a big, sparse, multidimensional sorted table

(row, column, timestamp) -> contents

All data can be versioned, and GC’ed per key

rows are ordered lexicographically, so

— www.cs.washington.edu -> edu.washington.cs.www
— Scans occur in order

— Related data found nearby

2/18/16

14

Is BigTable ACID?

Durability and atomicity: via GFS

Strong consistency: operations processed by a
single server in order

Isolated transactions within a single key
Multi-key transactions added in Spanner

Implementation

Divide the table into tablets (~100 MB)
grouped by a range of sorted rows

Each tablet is stored on a tablet server that
manages 10-1000 tablets

Master assigns tablets to servers, reassigns
when servers are new/crashed/overloaded,
splits tablets as necessary

Client library responsible for locating the data

2/18/16

15

