
2/18/16	

1	

BigTable	

Tom	 Anderson	
(slides	 from	 Jeff	 Dean	 and	 Dan	 Ports)	

Outline	

Last	 Ame:	
– Chubby:	 Paxos	 based	 lock	 server,	 service	
coordinaAon,	 dynamic	 configuraAon	 manager	

	
Today/Monday:	
– BigTable:	 scalable	 storage	 of	 structured	 data	
– GFS:	 large-‐scale	 storage	 for	 bulk	 data	

2/18/16	

2	

BigTable Motivation

•  Lots of (semi-)structured data at Google
–  URLs:

•  Contents, crawl metadata, links, anchors, pagerank,
…

–  Per-user data:
•  User preference settings, recent queries/search

results, …
–  Geographic locations:

•  Physical entities (shops, restaurants, etc.), roads,
satellite image data, user annotations, …

•  Scale is large
–  Billions of URLs, many versions/page (~20K/

version)
–  Hundreds of millions of users, thousands of q/sec
–  100TB+ of satellite image data

BigTable Goals

•  Want asynchronous processes to be continuously
updating different pieces of data
–  Want access to most current data at any time

•  Need to support:

–  Very high read/write rates (millions of ops per
second)

–  Efficient scans over all or interesting subsets of data
–  Efficient joins of large one-to-one and one-to-many

datasets

•  Often want to examine data changes over time

–  E.g. Contents of a web page over multiple crawls

2/18/16	

3	

BigTable

•  Distributed multi-level map
–  With an interesting data model

•  Fault-tolerant, persistent
•  Scalable
–  Thousands of servers
–  Terabytes of in-memory data
–  Petabyte of disk-based data
–  Millions of reads/writes per second, efficient scans

•  Self-managing
–  Servers can be added/removed dynamically
–  Servers adjust to load imbalance

Background: Building Blocks

Building blocks:
•  Google File System (GFS): Raw storage
•  Scheduler: schedules jobs onto machines
•  Lock service: distributed lock manager

–  Also can reliably hold tiny files (100s of bytes) w/ high
availability

•  MapReduce: simplified large-scale data processing

BigTable uses of building blocks:
•  GFS: stores persistent state
•  Scheduler: schedules jobs involved in BigTable

serving
•  Lock service: master election, location

bootstrapping
•  MapReduce: often used to read/write BigTable

data

2/18/16	

4	

Typical Cluster

Cluster Scheduling Master Lock Service GFS Master

Machine 1

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 2

Scheduler
Slave

GFS
Chunkserver

Linux

User
Task

Machine 3

Scheduler
Slave

GFS
Chunkserver

Linux

Single Task

BigTable
Server

BigTable
Server BigTable Master

Basic Data Model

•  Distributed multi-dimensional sparse map
 (row, column, timestamp) ! cell contents

•  Good match for most of our applications

…
…

“<html>…”

t1
t2

t3
www.cnn.com

ROWS

COLUMNS

TIMESTAMPS

“contents”

2/18/16	

5	

Rows

•  Name is an arbitrary string
– Access to data in a row is atomic
– Row creation is implicit upon storing data

•  Rows ordered lexicographically
– Rows close together lexicographically

usually on one or a small number of
machines

Tablets

•  Large tables broken into tablets at row
boundaries
–  Tablet holds contiguous range of rows

•  Clients can often choose row keys to achieve
locality

–  Aim for ~100MB to 200MB of data per tablet
•  Serving machine responsible for ~100

tablets
–  Fast recovery:

•  100 machines each pick up 1 tablet from failed
machine

–  Fine-grained load balancing
•  Migrate tablets away from overloaded machine
•  Master makes load-balancing decisions

2/18/16	

6	

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

…

Tablets & Splitting

“<html>…”

aaa.com

TABLETS

“contents”

EN cnn.com

cnn.com/sports.html

“language”

Website.com

Zuppa.com/menu.html

…

Yahoo.com/kids.html

Yahoo.com/kids.html?D

…

…

2/18/16	

7	

System Structure

Cluster Scheduling Master

handles failover, monitoring

GFS

holds tablet data, logs

Lock service

holds metadata,
handles master-election

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable tablet server

serves data

Bigtable master

performs metadata ops,
load balancing

Bigtable cell
Bigtable client
Bigtable client

library

Open()

QuesAons	

	
The	 BigTable	 master	 are	 not	 replicated	 for	
correctness/availability.	 	 Why?	
–  Hint:	 It	 is	 replicated	 as	 a	 performance	 opAmizaAon	

The	 tablet	 servers	 are	 not	 replicated	 for	
correctness/availability.	 	 Why?	

2/18/16	

8	

Fault	 tolerance	
•  If	 a	 tablet	 server	 fails	 (while	 storing	 ~100	 tablets)	
–  reassign	 each	 tablet	 to	 another	 machine	

–  so	 100	 machines	 pick	 up	 just	 1	 tablet	 each	

–  tablet	 SSTables	 &	 log	 are	 in	 GFS	

•  If	 the	 master	 fails	

–  acquire	 lock	 from	 Chubby	 to	 elect	 new	 master	

–  read	 config	 data	 from	 Chubby	

–  contact	 all	 tablet	 servers	 to	 ask	 what	 they’re	 responsible	 for	

Is	 BigTable	 ACID?	

•  Durability	 and	 atomicity:	 via	 GFS	
•  Strong	 consistency:	 operaAons	 processed	 by	 a	
single	 server	 in	 order	

•  Isolated	 transacAons	 within	 a	 single	 key	
•  MulA-‐key	 transacAons	 added	 in	 Spanner	

2/18/16	

9	

Locating Tablets

•  Since tablets move around from server to
server, given a row, how do clients find the
right machine ?
–  Need to find tablet whose row range covers the

target row
•  Could use consistent hashing
–  Would spread related data across multiple tablets

•  Could use the BigTable master
–  Central server would be bottleneck in large system

•  Instead: store special tables containing
tablet location info in BigTable cell itself

Locating Tablets (cont.)

•  Our approach: 3-level hierarchical lookup scheme for tablets
–  Location is ip:port of relevant server
–  1st level: bootstrapped from lock server, points to owner of META0
–  2nd level: Uses META0 data to find owner of appropriate META1 tablet
–  3rd level: META1 table holds locations of tablets of all other tables

•  META1 table itself can be split into multiple tablets

2/18/16	

10	

Tablet Representation

•  SSTable: Immutable on-disk ordered map from stringàstring
•  String keys: <row, column, timestamp> triples

Write buffer in memory
(random-access) Append-only log on GFS

SSTable on
GFS

SSTable on
GFS

SSTable on
GFS

(mmap)

Tablet

Write

Read

Compactions

•  Tablet state represented as set of immutable compacted
SSTable files, plus tail of log (buffered in memory)

•  Minor compaction:

–  When in-memory state fills up, pick tablet with most data
and write contents to SSTables stored in GFS
•  Separate file for each locality group for each tablet

•  Major compaction:

–  Periodically compact all SSTables for tablet into new base
SSTable on GFS
•  Storage reclaimed from deletions at this point

2/18/16	

11	

Columns

•  Columns have two-level name structure:
•  Family:optional_qualifier

•  Column family
–  Unit of access control
–  Has associated type information

•  Qualifier gives unbounded columns
–  Additional level of indexing, if desired

“CNN homepage”

“anchor:cnnsi.com”

“…” cnn.com

“contents:” “anchor:stanford.edu”

“CNN”

Timestamps

•  Used to store different versions of data in a cell
–  New writes default to current time, but timestamps for

writes can also be set explicitly by clients

•  Lookup options:

–  “Return most recent K values”
–  “Return all values in timestamp range (or all values)”

•  Column families can be marked w/ attributes:

–  “Only retain most recent K values in a cell”
–  “Keep values until they are older than K seconds”

2/18/16	

12	

API

•  Metadata operations
–  Create/delete tables, column families, change

metadata
•  Writes (atomic)
–  Set(): write cells in a row
–  DeleteCells(): delete cells in a row
–  DeleteRow(): delete all cells in a row

•  Reads
–  Scanner: read arbitrary cells in a bigtable

•  Each row read is atomic
•  Can restrict returned rows to a particular range
•  Can ask for just data from 1 row, all rows, etc.
•  Can ask for all columns, just certain column families, or

specific columns

Shared Logs

•  Designed for 1M tablets, 1000s of tablet servers
–  1M logs being simultaneously written performs badly

•  Solution: shared logs
–  Write log file per tablet server instead of per tablet

•  Updates for many tablets co-mingled in same file

–  Start new log chunks every so often (64MB)

•  Problem: during recovery, server needs to read log
data to apply mutations for a tablet
–  Lots of wasted I/O if lots of machines need to read data for

many tablets from same log chunk

2/18/16	

13	

Shared Log Recovery

Recovery:
•  Servers inform master of log chunks they

need to read
•  Master aggregates and orchestrates sorting of

needed chunks
–  Assigns log chunks to be sorted to different tablet

servers
–  Servers sort chunks by tablet, writes sorted data

to local disk
•  Other tablet servers ask master which servers

have sorted chunks they need
•  Tablet servers issue direct RPCs to peer tablet

servers to read sorted data for its tablets

Compression
•  Many opportunities for compression
–  Similar values in the same row/column at different

timestamps
–  Similar values in different columns
–  Similar values across adjacent rows

•  Within each SSTable for a locality group, encode

compressed blocks
–  Keep blocks small for random access (~64KB

compressed data)
–  Exploit fact that many values very similar
–  Needs to be low CPU cost for encoding/decoding

2/18/16	

14	

Compression Effectiveness
•  Experiment: store contents for 2.1B page crawl in BigTable instance

–  Key: URL of pages, with host-name portion reversed
•  com.cnn.www/index.html:http

–  Groups pages from same site together
•  Good for compression (neighboring rows tend to have similar contents)
•  Good for clients: efficient to scan over all pages on a web site

•  One compression strategy: gzip each page: ~28% bytes remaining
•  BigTable: BMDiff + Zippy

Type Count(B) Space(TB) Compressed %remaining
Web contents 2.1 45.1 4.2 9.2
Links 1.8 11.2 1.6 13.9
Anchors 126.3 22.8 2.9 12.7

Summary	 of	 BigTable	 Key	 Ideas	

Unstructured	 key-‐value	 table	 data	
–  No	 need	 for	 having	 a	 schema	 in	 advance	
–  instead	 create	 columns	 when	 needed	

Versioned	 data,	 with	 key-‐specific	 garbage	 collecAon	
Maintain	 data	 locality	 on	 same	 tablet	

Instead	 of	 consistent	 hashing,	 reconfigure	 tablet	
boundaries	 for	 load	 balancing	

Tablets	 for	 lookup:	 key	 -‐>	 tablet	
Efficient	 updates	 using	 log	 structure	 (store	 deltas)	

2/18/16	

15	

BigTable	 in	 retrospect	

•  Definitely	 a	 useful,	 scalable	 system!	

•  SAll	 in	 use	 at	 Google,	 moAvated	 lots	 of	 NoSQL	 DBs	

•  Biggest	 mistake	 in	 design	 (per	 Jeff	 Dean,	 Google):	
not	 supporAng	 distributed	 transacAons!	

– became	 really	 important	 w/	 incremental	 updates	

– users	 wanted	 them,	 implemented	 themselves,	 	
omen	 incorrectly!	

Megastore	 MoAvaAon	

•  Many	 applicaAons	 need	 transacAons	 that	 span	
mulAple	 rows	
– Examples:	 gmail,	 google+,	 picasa,	 …	

•  Key-‐value	 store	 that	 spans	 mulAple	 data	 centers	
– Fast	 local	 reads	
– At	 cost	 of	 slower	 writes	

2/18/16	

16	

Megastore	

•  Replicate	 data	 using	 BigTable	 as	 underlying	
key-‐value	 store	
– BigTable	 copy	 per	 data	 center	

•  Two	 phase	 commit	 for	 mulA-‐key	 transacAons	
– Store	 2pc	 log	 as	 “column”	 in	 BigTable	

•  Fast	 reads:	 in	 normal	 case,	 read	 lease	
provided	 to	 all	 data	 centers	

•  Slow	 writes:	 revoke	 read	 leases	 from	 all	 data	
centers	 before	 performing	 write	

