Bitcoin

Tom Anderson

QOutline

Last time: SpecPaxos

Today: Bitcoin

3/4/16

Bitcoin Goal

Electronic money without trust

Why Not Cash?

+ portable

+ cannot spend twice

+ cannot repudiate after payment

+ no need for trusted 3rd party

+ anonymous (serial #s?)

- doesn't work online

- easy to steal

+/- hard to tax / monitor

+/- government can print more as economy expands

3/4/16

Why Not Credit Cards/PayPal?

+ works online

+ somewhat hard to steal
+/- can repudiate

- requires trusted 3rd party
- tracks all your purchases

- can prohibit some transactions (e.g. wikileaks
donations)

+/- easy for government to monitor/tax/control

Bitcoin

Suppose we had a system where a penny was
just a string of bits

What's hard technically?
— Forgery: what's to keep someone creating many
copies?
— Double spending: what's to keep someone from
using the bits twice?

— Theft: what's to keep someone from learning the
bits and then spending them?

3/4/16

Bitcoin

What's hard socially/economically?
— Why does the string of bits have value?
— How do you convert it to cash?
— How to pay for infrastructure?
— Monetary policy (intentional inflation, ...)
— Laws (taxes, money laundering, drugs, terrorists)

Crossing the Chasm

Theory of technology adoption (Geoffrey Moore)
Early adopters

— Tech that solves a compelling problem

— Worth hassle of a partially working system
Early majority

— Pragmatists: need whole product solution
Late majority

— Tech needs to be cheap, reliable, widely used
Laggards

3/4/16

Examples
Cellphones
— Early users: drug dealers, international business
travellers

Email and the web

— Early users: scientists, pornographers

Cloud computing

— Early users: Internet search, high-speed traders
Bitcoin

— Early users: drug dealers, money launderers

Encryption

Sender Receiver
Plaintext (M) Plaintext (M)

Encrypt Ciphertext (C) Decrypt
E(M,KE) - D(C, KP)

* Cryptographer chooses functions E, D and keys KE, KP

— Suppose everything is known (E, D, M and C), should not be
able to determine keys KE, KP and/or modify msg

— provides basis for authentication, privacy and integrity

3/4/16

Public Key (RSA, PGP)

Plaintext Plaintext

Encrypt with
public key

Decrypt with
private key

Secret Ciphertext

Keys come in pairs: public and private
— Each principal gets its own pair
— Public key can be published; private is secret to
entity
* can’t derive K-private from K-public, even given
M, (M)AK-priv

Public Key: Authentication

Plaintext Plaintext

Encrypt with Decrypt with
PRIVATE key PUBLIC key

Keys come in pairs: public and private
— M = ((M)”*K-private)*K-public
— Ensures authentication: can only be sent by sender

Authentic ciphertext

3/4/16

Public Key: Secrecy

Plaintext Plaintext
Encrypt with Decrypt with
PUBLIC key Private key

Keys come in pairs: public and private
— M = ((M)”~K-public)*K-private
— Ensures secrecy: can only be read by receiver

Secret ciphertext

Message Digests (MD5, SHA)

* Cryptographic checksum: message integrity
— Typically small compared to message (MD5 128 bits)

— “One-way”: infeasible to find two messages with same
digest

Initial digest | Message (padded) |

Transform

Transform

[512 bits | 512 bits | | 512 bits |

Transform

Message digest

3/4/16

Infocoin Straw Proposal

Suppose a transfer is a signed statement, in
Alice's private key: "Alice gives Bob infocoin #57”
Issues?

— Who assigned the serial #? can Alice just mint
money?

— Easy for Bob to copy Alice’s statement; why can't
he use it twice?

— Easy for Alice to sign statement; why can’t she do
that twice?

With a Trusted Intermediary (Bank)

 Alice withdraws a coin from the bank; gets a
unique serial # (signed with Bank's private key)

* Alice signs certificate (with her private key)

* Bob checks certificate with bank to see that
serial # is valid (belongs to Alice) and not
double spent

3/4/16

Do we have to trust the bank?

Suppose bank keeps a visible log of operations

— Replicated public ledger (block chain) with all
transfers in sequence

— Replicas could be run by volunteers!
Alice creates block, signed by A’s private key
— B's public key
— Coin #
B creates block, signed by B’s private key
— C's public key
— Coin #

Preventing Double Spending

Want each transfer to be unique, applied at a

specific place in the sequence of operations, so:

B creates block, signed by B’s private key
— hash of previous block
— C's public key
—coin#

Any recipient can check coin # against an (up to

date) replica, to prevent double spending

3/4/16

3/4/16

Managing the Public Log

* Need updates to be applied in the same order
at each replica

 Different replicas receive updates at different
times
— How do readers know replica is up to date?
e Use Paxos?
— What if replicas aren’t trusted?
* Use Byzantine Paxos?
— Still need to trust 2f + 1 replicas

Use Metasync?

* Dropbox, Baiduy, ... have append-only logs
— allow anyone to read from log

e With Metasync, no need to trust any single
replica, but ok to trust the aggregate?

* However, Dropbox permissions are too soft
— anyone who can write log, can also delete log

10

Bitcoin

Protocol for managing replicated log
Replicas run by volunteers
Allow double spending to be detected
Provided a majority of replicas are well-intentioned
Make it hard for anyone to control a majority of replicas

Log Management Straw Proposal

Assume large number of replicas
* Every new op sent to one replica, rebroadcast to all

Slow system down to reduce the chance of a
conflicting updates

— Every node picks a random delay before applying update
— For 1M nodes, 1/600M => 1 update every 10 minutes

— Might still conflict!

— For higher throughput, batch transactions

Still requires some trust
— to pick the random # correctly, etc.

3/4/16

11

Sybil Attack

If anyone can be a replica, then:

— Alice run a billion replicas, convinces Bob to accept
transfer as legitimate

— Bob will only be able to check a subset

— How does Bob know the subset isn’t colluding?
— how can he know

Proof of work: force replicas to do work

But that will discourage volunteers, make it
easier for Alice to acquire a majority of replicas

Bitcoin solution: reward replicas for doing work

Proof of Work

Replicas perform a puzzle

— Puzzle is public: whoever completes the puzzle
first determines the next (batch of) ops in log

— and gets a reward

Bitcoin uses a simple computational puzzle,
find a nonce such that:

— SHA256(msg!nonce) = 0...

SHA is a cryptographic hash: no easier way to
find a match except to guess

3/4/16

12

Proof of Work

Match on first zero? Too easy; two tries on
average
Match on first two zeroes? Too easy; four tries on
average
Bitcoin (currently) requires 69 leading zeroes

— 1,210,954,923 GHash/sec

— S10K reward per solution, 10 minutes

— Difficulty adjusted to keep solutions at fixed rate

Some Details

Hash difficulty is not binary
* SHA256(msg|nonce) < value
* Allows fine-grained adjustment of proof of work

Prevent solving ahead
* SHA256(previous hash|msg|nonce) < target

Transactions batched
* Roughly 2000 ops per batch, so ~ 3/second

3/4/16

13

Reward

e Solution is broadcast to every replica; what
keeps replicas from stealing the solution?

— Every replica works on a slightly different puzzle
* X works on:

— SHA(previous hash|mint coin and give it to X| msg|
nonce) < target

* Y works on:

— SHA(previous hash|mint coin and give it to Y| msg|
nonce) < target

When Nonce is Found

Replicas have a choice:

— Ignore the answer and continue to try to find
another one

— Take the answer as a given and work on the next
puzzle.

Which should it choose?

— If more than half of the computational power
chooses (b), replica should choose (b)

3/4/16

14

3/4/16

Who Wins?

 If two nodes find the nonce at about the same
time, who wins?

* Depends on solution to the next puzzle!

e Everyone has an incentive to work on chain
that others will work on
— If next solution uses A’s solution, A wins
— If next solution uses B’s solution, B wins

Mining Groups

* Reward is sporadic: if 1M replicas search for
hash, each will win once every few decades.

* Can we pool resources so group of replicas win
more regularly?
— Pay nodes to look for solutions

* Suppose Y is a coordinator. Ask replicas to do:
— SHA(previous hash|mint coin and give it to Y| msg|
nonce)
* Hand out small reward for anything with 50
leading zeros

15

Mining Incentives

Do replicas have an incentive to announce a
solution as soon as it is found, or keep it secret?

Release and get reward, if standalone solver
Keep secret, if control > 50% of compute power
— Solve puzzle

— Start solving next puzzle

— Release first solution if competing solution is
announced

Bitcoin creator performed first k entries in block

chain, taking first k rewards

Mining Incentives

Do replicas have an incentive to include a
proposed transaction in hash computation?

— Hash is valid even if the miner ignores all
requested transfers

Each transaction transfers fee to whoever
computes the hash
— Currently $0.10/transaction

How does that compare to a debit card
transaction fee?

3/4/16

16

Serial Numbers Revisited

* Proof of work solves how we create new coins
e Every 10 minutes, another reward
* What about inflation?

— Reward decreases by 2x every few years

— Increasing number of coins in circulation

— Fixed total number of coins (today, 93% of total)

Bitcoin

Network of bitcoin peers (servers) run by volunteers
* Peers are not trusted: many may be corrupt

Each peer knows about all bitcoins and transactions

Transaction (sender -> receiver):

— sender sends transaction info to some peers

— peers flood transaction to all other peers

— receiver checks that lots of peers have seen transaction
— receiver checks that bitcoin hasn't already been spent

3/4/16

17

Transactions

Mined coins aggregated into transaction record

Each transaction record has a public key

— Only owner can transfer funds onward

— Multi-output: to receiver, to miner

— Check remaining balance > transfer

— Prevents double spending

Bitcoin servers maintain the complete chain

Miners only accept valid transactions

What’s in a Transaction Record?

Hash pointer to source of funds (unspent
transaction)

Amount to be transferred

Amount to be paid to miner

Public key of new owner

Signed by private key of previous owner

3/4/16

18

Block Chain

Transactions aggregated into blocks
Each block includes hash of previous block

Miners receive transactions
— Validate before include
— Compute hash on set of transactions in block

Block valid only if solve puzzle
And next solved block includes hash, ...

Example

Bitcoin owned by user Y (who received it in payment
from X)

T7: pub(Y), hash(T6), sig(X)

Y buys a hamburger from Z and pays with this
bitcoin

Z needs to tell Y Z's public key (bitcoin "address")
— Perhaps create a new address just for Y's purchase
Y creates a new transaction and signs it

T8: pub(Z), hash(T7), sig(Y)

3/4/16

19

Example

T8: pub(Z), hash(T7), sig(Y)
Y sends T8 to bitcoin peers, which flood it

honest peers verify that
— no other transaction mentions hash(T7),
— T8's sig() corresponds to T7's pub()

* Z waits until lots of peers have seen/verified T8
verifies that T8's pub() is Z's public key,
then Z gives hamburgerto Y

Questions

Where is Z's resulting bitcoin value "stored"?
— bitcoin balance = unspent transaction
— Z"owns" the bitcoin: has private key that allows Z to
make next transaction
Does transaction chain prevent stealing?

— current owner's private key needed to sign next
transaction

— Attacker can steal Z's private key

— Z uses private key a lot, so probably on his PC, easy to
steal?

— a significant problem for bitcoin in practice

3/4/16

20

Double Spending

Suppose Y creates two transactions: Y->Z, Y->Q
Z and Q probably don't check all the peers
— Y has a chance to tell diff peers diff transactions

Maybe some peers are corrupt and cooperating
with Y

— hide Y->Q from Z, hide Y->Z from Q

Only need to play tricks briefly
— just until Z gives the hamburgerto Y

Double Spending

How long should Z wait before giving Y the hamburger?
Until Z sees Y flood the transaction to many peers?
— not in the chain, Y might flood conflicting xaction
Until Z sees one peer with chain ...<-BZ (containing Y->Z)?
— maybe that peer is corrupt, in league with Y
Until Z sees lots of peers with chain ...<-BZ?
— risky -- some other chain may win
— perhaps that chain won't have Y->Z
Until Z sees chain with multiple blocks after BZ?
— slim chance attacker can catch up

3/4/16

21

