
3/4/16

1

Byzantine Fault Tolerance
Raymond Cheng

CSE452
ryscheng@cs.washington.edu

Quick Recap

Primary-backup:

Paxos

Clients
Clients

Clients
Clients

Primary Backup

Paxos
Peer

Paxos
Peer

Paxos
Peer

Clients
Clients

Clients
Clients

Clients
Clients

Clients
Clients

Clients
Clients

Clients
Clients

3/4/16

2

Failure Model So Far: Fail-stop

Assume servers follow your protocol
e.g. power failures, network failure, network partition

This is hard enough!
e.g. crash vs network failure

Byzantine Generals Problem

“We imagine that several divisions of the Byzantine army are
camped outside an enemy city, each division commanded by
its own general. The generals can communicate with one
another only by messenger. After observing the enemy, they
must decide upon a common plan of action. However, some
of the generals may be traitors, trying to prevent the loyal
generals from reaching agreement...”

-  Lamport, Shostak, and Pease, 1980-2

3/4/16

3

Byzantine Generals Problem

Byzantine Faults
Buggy servers - potentially computing incorrect results

 or maliciously modified

Byzantine Agreement
Replicated state machine
Assume 2f+1 of 3f+1 are honest/non-faulty (f are faulty)
Use voting to come to agreement

Paxos Pseudocode
proposer(v):	
	 	 while	 not	 decided:	
	 	 	 	 choose	 n,	 unique	 and	 higher	 than	 any	 n	 seen	
so	 far	
	 	 	 	 send	 prepare(n)	 to	 all	 servers	 including	 self	
	 	 	 	 if	 prepare_ok(n_a,	 v_a)	 from	 majority:	
	 	 	 	 	 	 v'	 =	 v_a	 with	 highest	 n_a;	 choose	 own	 v	
otherwise	
	 	 	 	 	 	 send	 accept(n,	 v')	 to	 all	
	 	 	 	 	 	 if	 accept_ok(n)	 from	 majority:	
	 	 	 	 	 	 	 	 send	 decided(v')	 to	 all	
	
	

acceptor's	 state:	
	 	 n_p	 (highest	 prepare	 seen)	
	 	 n_a,	 v_a	 (highest	 accept	 seen)	
	
acceptor's	 prepare(n)	 handler:	
	 	 if	 n	 >	 n_p	
	 	 	 	 n_p	 =	 n	
	 	 	 	 reply	 prepare_ok(n_a,	 v_a)	
	 	 else	
	 	 	 	 reply	 prepare_reject	
	
acceptor's	 accept(n,	 v)	 handler:	
	 	 if	 n	 >=	 n_p	
	 	 	 	 n_p	 =	 n	
	 	 	 	 n_a	 =	 n	
	 	 	 	 v_a	 =	 v	
	 	 	 	 reply	 accept_ok(n)	
	 	 else	
	 	 	 	 reply	 accept_reject	

3/4/16

4

What can the attacker do?

Control all faulty nodes (e.g. supply code)

Aware of faulty node’s crypto keys

Can read all network messages

Can temporarily force messages to be delayed (e.g. via
DoS)

What can’t the attacker do?

Break cryptography primitives

Control more than f out of 3f+1 replicas

Simple example:

2 clients: Alice & Bob

Alice::
 echo A > grade
 echo B > grade
 tell YM "grade file ready"
 Bob::
 cat grade

a faulty system could:

totally make up the file
contents

execute write("A") but ignore
write("B")

show "B" to Alice and "A" to
Bob

execute write("B") only only
some of the replicas

3/4/16

5

BFT: Design Attempt 1

Client

Server

Server

Server

Server

Client sends request to all n
servers

Waits for all n servers to reply

Only proceeds if all n agree

BFT: Design Attempt 2

Client
S2

S1

S3

Client sends request to all 2f
+1 servers

Assume f are faulty

Waits for f+1 matching replies
(majority)

3/4/16

6

BFT: Design Attempt 2

Client
S2

S1

S3

write(“A”)

OK from {S1, S2, S3}

write(“B”)

OK from {S1, S2}

read()

S1 and S3 replies “A”

BFT: Design Attempt 3

Client
S2

S1

S3

Client sends request to all 3f
+1 servers

Assume f are faulty

Waits for 2f+1 matching
replies

S4

3/4/16

7

BFT: Design Attempt 3

Client
S2

S1

S3

write(“A”)
OK from {S1, S2, S3, S4}

write(“B”)
OK from {S1, S2, S3}

read()

S1 and S4 replies “A”

S2 and S3 replies “B” S4

Multiple Clients

Remember: linearizability

-  Non-faulty replicas must
process operations in
same order

Let’s introduce a primary

-  Picks an order for
concurrent clients

Fault primaries can:

send wrong result to client

different ops to different
replicas

ignore client requests

3/4/16

8

Handling a faulty primary

Replicas send results directly to client

Replicas exchange information about ops sent by primary

Clients notify replicas of each operation, as well as primary

Each replica watches progress of each operation

If no progress, force change of primary

BFT: Design Attempt 4

C

S2

S1

S3

S4

S2

S1

S3

S4

S2

S1

S3

S4

C

PRE-PREPARE PREPARE
C -> all 3f+1 servers

One is primary

Assume f are faulty

Primary chooses next op and n

Primary -> replicas
PRE-PREPARE(op, n)

Replicas broadcast
PREPARE(op, n)

If get matching PREPARE(op, n)
from 2f+1 replicas, execute
operation, send reply to client

Client is happy with f+1 replies

3/4/16

9

Fault Primary Scenarios

case 1: all good nodes get 2f+1 matching PREPAREs

case 2: >= f+1 good nodes get 2f+1 matching PREPARES

case 3: < f+1 good nodes get 2f+1 matching PREPAREs

View Changes: Design Attempt 1

replicas send VIEW-CHANGE requests to *new* primary

new primary waits for enough view-change requests

new primary announces view change w/ NEW-VIEW

includes the VIEW-CHANGE requests as proof that enough replicas
wanted to change views

new primary starts numbering operations at:
(last n it saw) + 1

3/4/16

10

client sends op to all

primary sends PRE-PREPARE(op, n) to all

all send PREPARE(op, n) to all

after replica receives 2f+1 matching PREPARE(op, n)

send COMMIT(op, n) to all

after receiving 2f+1 matching COMMIT(op, n), execute op, reply

Practical Byzantine Fault Tolerance

View Changes

each replica sends new primary 2f+1 PREPAREs for recent
ops

new primary waits for 2f+1 VIEW-CHANGE requests

new primary sends NEW-VIEW msg to all replicas with
complete set of VIEW-CHANGE msgs

list of every op for which some VIEW-CHANGE contained 2f+1 PREPAREs
i.e. list of final ops from last view

3/4/16

11

Practical Applications

Peer-to-peer applications (e.g. bitcoin)
Critical systems (e.g. aircraft)

