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Transactions: Motivating Example
send_money(user1, user2, amount) {

Begin_Transaction();

if (user1.balance - amount >= 0) {

user1.balance = user1.balance - amount;

user2.balance = user2.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}



ACID Guarantees
• Atomicity: all parts of the transaction execute or none 

(user1’s decreases and user2’s balance increases) 

• Consistency: the transaction only commits if it preserves 
invariants (user1’s balance never goes below 0) 

• Isolation: the transaction executes as if it executed by 
itself (even if user3 is accessing user1’s account, that 
will not interfere with this transaction) 

• Durability: the transaction’s effects are not lost after it 
executes (updates to the balances will remain forever)



What if the transaction is 
distributed?

• Databases are often partitioned for scalability 
(user1 and user2 might not share a server) 

• A transaction might touch more than one partition 

• How do we guarantee that all of the partitions 
commit the transactions or none?



Two-Phase Commit (2PC)

• An atomic commitment protocol (ACP) 

• Guarantees that participants all agree to execute a 
transaction or none of them will execute the 
transaction 

• There are other ACPs: three-phase commit, etc. 

• Think about why you need at least two phases …



2PC Overview
• Participants: nodes that have parts of the transaction to 

update 

• Coordinator: node that will be responsible to running the 
protocol, can be a participant 

• RPCs: 

• Prepare - the request for votes, responses Yes or No 

• Commit - commit the transaction 

• Abort - abort the transaction



The 2PC Protocol
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Protocol Invariants
• All processes that reach a decision, reach the same one.  

• A process cannot reverse its decision once it has reached 
one. 

• The commit decision can only be reached if all 
participants vote Yes. 

• If there are no failures and all participants vote Yes, then 
the transaction will commit. 

• If failures are eventually repaired, then every process will 
eventually reach a decision.



Maintaining invariants with 
failures



Participant failures: 
Before sending response?
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Participant failures: 
After sending vote?
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Participant failures: 
Lost vote?
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Coordinator failures



Coodinator failures: 
Before sending prepare
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Coordinator failures: 
After sending prepare
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Coordinator failures: 
After receiving votes
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Coordinator failures: 
After sending decision

Coordinator Participant Participant
Prepare

Prepare

Yes
Commit

Yes Yes

Commit

Decision?



Do we need the coordinator?
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What if we do not have the 
coordinator’s decision?
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2PC is a blocking protocol

• A blocking protocol is one that cannot make 
progress if some of the participants are unavailable 
(either down or partitioned). 

• They have fault-tolerance but not availability. 

• Paxos does not have this limitation (but has a 
variant of it). 

• This limitation is fundamental (2 generals problem).


