
L11: Two-Phase Commit
CSE 452 Winter 2016

Transactions: Motivating Example
send_money(user1, user2, amount) {

Begin_Transaction();

if (user1.balance - amount >= 0) {

user1.balance = user1.balance - amount;

user2.balance = user2.balance + amount;

Commit_Transaction();

} else {

Abort_Transaction();

}

}

ACID Guarantees
• Atomicity: all parts of the transaction execute or none

(user1’s decreases and user2’s balance increases)

• Consistency: the transaction only commits if it preserves
invariants (user1’s balance never goes below 0)

• Isolation: the transaction executes as if it executed by
itself (even if user3 is accessing user1’s account, that
will not interfere with this transaction)

• Durability: the transaction’s effects are not lost after it
executes (updates to the balances will remain forever)

What if the transaction is
distributed?

• Databases are often partitioned for scalability
(user1 and user2 might not share a server)

• A transaction might touch more than one partition

• How do we guarantee that all of the partitions
commit the transactions or none?

Two-Phase Commit (2PC)

• An atomic commitment protocol (ACP)

• Guarantees that participants all agree to execute a
transaction or none of them will execute the
transaction

• There are other ACPs: three-phase commit, etc.

• Think about why you need at least two phases …

2PC Overview
• Participants: nodes that have parts of the transaction to

update

• Coordinator: node that will be responsible to running the
protocol, can be a participant

• RPCs:

• Prepare - the request for votes, responses Yes or No

• Commit - commit the transaction

• Abort - abort the transaction

The 2PC Protocol
Coordinator Participant Participant

Prepare
Prepare

Yes
Yes

Yes

Commit
Commit

Protocol Invariants
• All processes that reach a decision, reach the same one.

• A process cannot reverse its decision once it has reached
one.

• The commit decision can only be reached if all
participants vote Yes.

• If there are no failures and all participants vote Yes, then
the transaction will commit.

• If failures are eventually repaired, then every process will
eventually reach a decision.

Maintaining invariants with
failures

Participant failures:
Before sending response?

Coordinator Participant Participant
Prepare

Prepare

Yes

No Abort

Abort

Decision?

Participant failures:
After sending vote?

Coordinator Participant Participant
Prepare

Prepare

Yes

Yes
Commit

Commit

Yes

Participant failures:
Lost vote?

Coordinator Participant Participant
Prepare

Prepare

Yes
Yes

No Abort

Abort

Decision?

Coordinator failures

Coodinator failures:
Before sending prepare

Coordinator Participant Participant

Prepare
Prepare

Yes
Yes

Yes Commit
Commit

Coordinator failures:
After sending prepare

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Coordinator failures:
After receiving votes

Coordinator Participant Participant
Prepare

Prepare

Yes Yes
Yes Commit

Commit

Prepare
Prepare

Yes Yes

Coordinator failures:
After sending decision

Coordinator Participant Participant
Prepare

Prepare

Yes
Commit

Yes Yes

Commit

Decision?

Do we need the coordinator?
Coordinator Participant Participant

Prepare
Prepare

Yes

Commit

Commit

Yes Yes

Decision?

What if we do not have the
coordinator’s decision?

Coordinator Participant Participant
Prepare

Prepare

Yes
or

No?

Commit?

Decision?

Yes

Yes

2PC is a blocking protocol

• A blocking protocol is one that cannot make
progress if some of the participants are unavailable
(either down or partitioned).

• They have fault-tolerance but not availability.

• Paxos does not have this limitation (but has a
variant of it).

• This limitation is fundamental (2 generals problem).

