
Lab 4 Details
Even more file stuff



Admin

● Lab 4 due Friday, 3/11

HARD DEADLINE (FOR EVERYTHING)



Part A: File Operations



Inodefile

● The inodefile is the “inodes” section on disk, which stores the table of 
inodes (struct dinode)

○ Reading from and writing to inodefile is just like reading/writing for a normal file
● 0th inode is the inodefile itself

○ Data field in 0th inode corresponds to inodes region
● 1st inode is the root directory

○ Data field is array of directory entries (struct dirent)
● icache.inodefile points to the inode file



Inodefile



Helpful functions

iget: create a cache entry for the in-memory copy of the inode, but the entry is 
empty (doesn’t synchronize with dinode)

locki: copy information from dinode to the in-memory inode cache

read_dinode: read the dinode from the disk



read_dinode

● What does the function do?
○ Reads in struct dinode at index `inum` from inodefile

● Having a similar write_dinode() can be helpful (not provided in starter code)
○ When should we write dinode?



Bitmap

● Each block contains 512 bytes
○ Each block in bitmap represents 512 * 8 = 4096 blocks

■ (i.e., block at sb.bmapstart -> blocks 0-4095 , sb.bmapstart + 1 -> 4096-8191, etc.
○ Need to use bitmasking to mark blocks in bitmap

● Some useful macros
○ BBLOCK(b, sb) -> block number in

bitmap containing b 



Extents

● Extents region - where the actual data for files in the filesystem lives 
(excluding the initial inode file)

● Extent - sequence of contiguous blocks of disk
○ When allocating an extent for a file, all blocks in the extent should be marked used in the 

bitmap even if no data is written yet
■ “Reserving” contiguous blocks for file to use



Extents



dirent
“foo” 16

Summary

struct extent
struct extent



Part B: Crash Safety



Where to Log?

It’s just blocks on disk, so you can put it anywhere you want (within reason)

After-bitmap, before-inodes is a pretty good place
You’ll need to update the superblock struct and mkfs.c



Log API

● The spec recommends designing an API for yourself for log operations:
○ log_begin_tx(): (optional) begin the process of a transaction
○ log_write(): wrapper function around normal block writes
○ log_commit_tx(): complete a transaction and write out the commit block
○ log_recover(): log playback when the system reboots and needs to check the log for disk 

consistency
■ Where/when should this be called? (Hint: inspect kernel/fs.c)



Log Optimization

● Implement a mechanism to keep buffer written to log in buffer
● Optional



What should log_write() do differently?

● Once all block writes in transaction have called log_write(), 
log_commit_tx() will be called

● Commit
○ Flush commit block to disk
○ Reset commit flag



Context (lab 1: File API. lab 4: Inode API)



Questions?
Good luck on Lab 4!


