What do VMMs enable?

• Running multiple operating systems (called “guest OS’s”) and their applications on a single physical computer, as if each were running on its own private virtual computer

• Efficient – mostly direct execution, rather than simulation

• Contemporary examples
 – VMware
 – Microsoft’s VirtualPC / VirtualServer
 – Parallels (Mac)
 – Xen
Virtual Machine = Guest OS + apps

- **Windows**
- **Linux**
- **virtual machine monitor**
- **hardware**

Another hw interface

hw interface

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski
Basic ideas

• Guest OS runs in user mode

• When any kind of interrupt / exception / trap occurs, we’ll end up in the VMM rather than the guest OS

• VMM simulates state changes that would have been made by the hardware, then restarts VM at the guest OS handler address
 – E.g., stuffs the saved PC where the architecture says it should be

• When the guest OS tries to execute a privileged instruction
 – VMM gets control, simulates effect of privileged instruction
 • VMM knows that guest OS was in virtual kernel mode so the attempted operation is OK
VMM History

• Conceived by IBM in the late 1960’s
 – CP-40, CP-67, VM/360
• Sold continuously since then
• Used first for OS development and debugging, then for time sharing (multiple single-user OS’s, plus a few single-job batch OS’s), eventually for server consolidation
VMMs Today

- OS development and debugging
- Software compatibility testing
- Running software from another OS
 - or another OS version (newer or older than current)
- Virtual infrastructure for Internet services (server consolidation)
- Software system distribution
 - Distribute an entire, configured machine, rather than an app that needs configuring

- Examples
 - Run Windows on your Mac, or MacOS on your PC
 - CSE Home virtual machine
 - Amazon’s Elastic Compute Cloud (EC2)
Comparing the Unix and VMM APIs

<table>
<thead>
<tr>
<th></th>
<th>UNIX</th>
<th>VMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>File system</td>
<td>(virtual) disk</td>
</tr>
<tr>
<td>Networking</td>
<td>Sockets</td>
<td>(virtual) Ethernet</td>
</tr>
<tr>
<td>Memory</td>
<td>Virtual Memory</td>
<td>(virtual) Physical memory</td>
</tr>
<tr>
<td>Display</td>
<td>/dev/console</td>
<td>(virtual) Keyboard, display device</td>
</tr>
</tbody>
</table>
Possible Implementation Strategy: Complete machine emulation

- The VMM implements the complete hardware architecture as a software simulation

```java
while(true) {
    Instruction instr = fetch();
    // emulate behavior in software
    instr.emulate();
}
```

Drawback: This is really slow
Practical alternative: VMM gets control on privileged instructions only

- Treat guest operating systems (and their apps) like an application
 - Guest apps run in user mode (mostly no problem...)
 - Guest OS runs in user mode (somewhat more of a problem...)
 - Most instructions execute natively on the CPU
 - Privileged instructions and traps transfer control to VMM, which reflects them back up to guest OS (after emulating virtual hw state changes)
Virtualizing the User/Kernel Boundary

• Both the guest OS and applications run in (physical) user-mode

• For each virtual machine, the VMM keeps a software mode bit:
 – During a system call, switch to “kernel” mode
 – On system call return, switch to “user” mode

• What does the VMM do if a VM executes a privileged instruction while in virtual user mode?

• What does the VMM do if a VM executes a privileged instruction while in virtual kernel mode?
Tracing Through a File System Read

Application

read() syscall

Guest OS

VMM

Hardware

trap detected

trap handler;
change VM
to “kernel” mode

trap handler;
read syscall
read from disk()

trap handler;
emulate I/O

priv inst. detected

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski
Questions, to clarify …

• What if the I/O could be handled from the buffer cache?

• Does the VMM handle a VM’s I/O request synchronously?

• There are a zillion different types of disks (and networks and ...) …
 Do the device drivers for these reside in the guest OS or in the VMM?
A possible “gotcha”

- All instructions that modify hardware state must be privileged (so that VMM can get control, modify the virtual hardware state for that guest, and not modify the physical hardware state)

- Example: Suppose the ERET instruction (return to a user process after handling an exception) is not privileged
 - ERET sets the PC to the saved PC, and sets CPU mode to user
 - There doesn’t seem to be a reason to prevent user processes from doing this (even if there’s no reason for them to want to)

Why would this be a problem for a VMM?
• Conditions for an architecture to be virtualizable were defined in 1974

• x86 architecture did not satisfy these conditions!
 – Many reasons, but most of them stem from instructions that have different behavior in user mode and kernel mode, and that don’t trap when executed in user mode

• Approach: binary re-writing
 – When a code page is loaded, scan it, looking for offending instructions
 – Patch these to cause a fault
 – Remember the instruction that used to be there
Other approaches

• **Hardware:** Both Intel (VT-x) and AMD (AMD-V) have developed virtualization extensions to the architecture (starting ~2006)

• **Paravirtualization:** Export a slight modification of the hardware; port the OS to this new hardware
Memory

• VMM’s also utilize memory protection (in addition to privileged instructions) to do their job

• Have not described how memory is virtualized by a VMM, creating “virtual physical memory” for the guest OS’s

• Approach involves the VMM futzing with the page tables of the guest OS’s
Trust Issues

Problem:

– Who can you trust?

– OS protects processes from each other
 • OS is “trusted” since you’re running it on your hardware
 • You don’t worry about OS snooping your data

– But in the cloud, Amazon (or Microsoft or Google) are running your operating systems in \textit{their} VMM
 • VMs are "just" user mode processes
 • VMM “naturally” isolates them
 • But, the VMM can look into the guest OS/process!
How You Can Trust The VMM

Solution:

– Tricky hardware!
– Keep all data encrypted
 • On disk, no problem.
 • In memory, sure… but...
 • How does the processor read/write/execute?
– Intel SGX/MEE processor / memory controller
 • RAM is encrypted!
 • Special instructions to tell processor where the encrypted regions are
 • Processor decrypts pages into hidden caches and executes from there