Module 12
Secondary Storage

John Zahorjan
Secondary storage

• Secondary storage typically:
 – is anything that is outside of “primary memory”
 – does not permit direct execution of instructions or data retrieval via machine load/store instructions

• Characteristics:
 – it’s large: 500-8000GB
 – it’s cheap: $0.05-$0.10/GB for hard drives
 – it’s persistent: data survives power loss
 – it’s slow: milliseconds to access
 • why is this slow??
 – it does fail, if rarely
 • big failures (drive dies; MTBF ~3 years)
 – if you have 100K drives and MTBF is 3 years, that’s 1 “big failure” every 15 minutes!
 • little failures (read/write errors, one byte in 10^{13})
Another trip down memory lane …

IBM 2314
About the size of 6 refrigerators
8 x 29MB (M!)
Required similar-sized air condx!

.01% (not 1% – .01%! the capacity of this $100 4”x6”x1” item
Disk trends

• Disk capacity, 1975-1989
 – doubled every 3+ years
 – 25% improvement each year
 – factor of 10 every decade
 – Still exponential, but far less rapid than CPU performance

• Disk capacity, 1990-2002
 – doubling every 12 months
 – 100% improvement each year
 – factor of 1000 every decade
 – Capacity growth 10x as fast as processor performance!

• Disk capacity, 2003-recently
 – back to 25% improvement rate
HDD Areal Density and Average Sales Price

• Only a few years ago, we purchased disks by the megabyte

• Today, 1 GB (a billion bytes) costs $1, $0.50, $0.10-$0.05 from Dell (except you have to buy in increments of 40, 80, 250, 2000 GB)
 – => 1 TB costs $1K, $500, $100, 1 PB costs $1M, $500K, $100K

• Technology is amazing
 – Flying a 747 6” above the ground
 – Reading/writing a strip of postage stamps

• But …
 – Jets do crash …
Memory hierarchy

- Each level acts as a cache of lower levels
Memory hierarchy: distance analogy

- CPU registers: seconds
- L1 cache: 1 minute
- L2 cache: 10 minutes
- Primary Memory: 1.5 hours
- Secondary Storage: 2 years
- Tertiary Storage: 2,000 years

Geographical analogies:
- CPU registers: "My head"
- L1 cache: "This room"
- L2 cache: "This building"
- Primary Memory: Olympia
- Secondary Storage: Pluto
- Tertiary Storage: Andromeda
Storage Latency: How Far Away is the Data?

- Tape/Optical Robot: 10^9 years
- Disk: 10^6 years
- Memory: 100 years
- On Board Cache: 10 years
- On Chip Cache: 2 years
- Registers: 1 year
- This Building: 10 minutes
- This Room: 1 minute
- My Head: 1 minute
- Andromeda: 2,000 years
- Pluto: 2 years

© 2004 Jim Gray, Microsoft Corporation
HDDs and the OS

- Disks are messy, messy devices
 - errors, bad blocks, missed seeks, etc.
- Job of OS is to hide this mess from higher-level software (disk hardware increasingly helps with this)
 - low-level device drivers (initiate a disk read, etc.)
 - higher-level abstractions (files, databases, etc.)
 - (note that modern disk drives do some of this masking for the OS)
- OS may provide different levels of disk access to different clients
 - physical disk block (surface, cylinder, sector)
 - disk logical block (disk block #)
 - file logical (filename, block or record or byte #)
Physical disk structure

- Disk components
 - platters
 - surfaces
 - tracks
 - sectors
 - cylinders
 - arm
 - heads
Disk performance

• Performance depends on a number of steps
 – **seek**: moving the disk arm to the correct cylinder
 • depends on how fast disk arm can move
 – seek times aren’t diminishing very quickly *(why?)*
 – **rotation (latency)**: waiting for the sector to rotate under head
 • depends on rotation rate of disk
 – rates are increasing, but slowly *(why?)*
 – **transfer**: transferring data from surface into disk controller, and from there sending it back to host
 • depends on density of bytes on disk
 – increasing, relatively quickly

• When the OS uses the disk, it tries to minimize the cost of all of these steps
 – particularly seeks and rotation
Performance via disk layout

• OS may increase file block size in order to reduce seeking
 – Upside of larger blocks?
 – Downside?

• OS may seek to co-locate “related” items in order to reduce seeking
 – blocks of the same file
 – data and metadata for a file
Performance via caching, pre-fetching

• Keep data or metadata in memory to reduce physical disk access
 – problem?

• Fetch blocks into memory before requested, if you can make a good guess
 – On-disk buffer may store adjacent data not explicitly requested
Performance via disk scheduling

- Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 - reasonable when load is low
 - long waiting time for long request queues
 - SSTF (shortest seek time first)
 - minimize arm movement (seek time), maximize request rate
 - unfairly favors middle blocks
 - SCAN (elevator algorithm)
 - service requests in one direction until done, then reverse
 - skews wait times non-uniformly (why?)
 - C-SCAN
 - like scan, but only go in one direction
 - uniform wait times
Interacting with disks

• In the old days…
 – OS would have to specify cylinder #, sector #, surface #, transfer size
 • i.e., OS needs to know all of the disk parameters
Interacting with disks

- Modern disks are more convenient, making them even more complicated
 - not all sectors are the same speed
 - sectors are remapped, ...
 - disk provides a higher-level interface, e.g., SCSI
 - exports data as a logical array of blocks [0 … N]
 - maps logical blocks to cylinder/surface/sector
 - OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 - on-board cache
 - as a result, physical parameters are hidden from OS
 - both good and bad
Seagate Barracuda 3.5” disk drive

- 1 Terabyte of storage (1000 GB)
- $100
- 4 platters, 8 disk heads
- 63 sectors (512 bytes) per track
- 16,383 cylinders (tracks)
- 164 Gbits / inch-squared (!)
- 7200 RPM
- 300 MB/second transfer
- 9 ms avg. seek, 4.5 ms avg. rotational latency
- 1 ms track-to-track seek
- 32 MB cache
It’s about capacity…

YouTube Hours/Minute Uploaded

\[y = 1E-11x^4 - 2E-06x^3 + 0.1x^2 - 2649.2x + 3E+07 \]

\[R^2 = 0.99597 \]
HDD Capacity Projections

ASTC Technology Roadmap

- PMR: Perpendicular Magnetic Recording
- PMR\(^+\): PMR with Two Dimensional Magnetic Recording (TDMR) and/or Shingled Magnetic Recording (SMR)
- HAMR\(^+\): Heat Assisted Magnetic Recording with TDMR and/or SMR
- BPRM\(^+\): Bit Patterned Magnetic Recording (BPRM)
- HDMR\(^+\): Heated-Dot Magnetic Recording (BPRM+HAMR\(^+\))

Areal density (Tb/in\(^2\))

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski
Solid state drives: disruption

- HDDs are based on spinning magnetic platters
 - *mechanics* of drives determine performance characteristics
 - sector addressable, not byte addressable
 - capacity improving exponentially
 - sequential bandwidth improving reasonably
 - random access latency improving very slowly
 - cost dictated by massive economies of scale, and many decades of commercial development and optimization
• Solid state drives are based on NAND flash memory
 – no moving parts; performance characteristics driven by electronics and physics – more like RAM than spinning disk
 – relative technological newcomer, so costs are still quite high in comparison to hard drives, but dropping fast
SSD performance: reads

• Reads
 – unit of read is a page, typically 4KB large
 – today’s SSD can typically handle 10,000 – 100,000 reads/s
 • 0.01 – 0.1 ms read latency (50-1000x better than disk seeks)
 • 40-400 MB/s read throughput (1-3x better than disk seq. thpt)
SSD performance: writes

• Writes
 – flash media must be erased before it can be written to
 – unit of erase is a block, typically 64-256 pages long
 • usually takes 1-2ms to erase a block
 • blocks can only be erased a certain number of times before they become unusable – typically 10,000 – 1,000,000 times
 – unit of write is a page
 • writing a page can be 2-10x slower than reading a page

• Writing to an SSD is complicated
 – random write to existing block: read block, erase block, write back modified block
 • leads to hard-drive like performance (300 random writes / s)
 – sequential writes to erased blocks: fast!
 • SSD-read like performance (100-200 MB/s)
SSDs: dealing with erases, writes

• Lots of higher-level strategies can help hide the warts of an SSD
 – many of these work by virtualizing pages and blocks on the drive (i.e., exposing logical pages, not physical pages, to the rest of the computer)
 – wear-leveling: when writing, try to spread erases out evenly across physical blocks of the SSD
 • Intel promises 100GB/day x 5 years for its SSD drives
 – log-structured filesystems: convert random writes within a filesystem to log appends on the SSD (more later)
 – build drives out of arrays of SSDs, add lots of cache
SSD cost

• Capacity
 – today, flash SSD costs ~$.40/GB (down from $250 three years ago)
 • 1TB drive costs around $400
 – 1TB hard drive costs around $100
 – Data on cost trends is a little sketchy and preliminary

• Energy
 – SSD is typically more energy efficient than a hard drive
 • 1-2 watts to power an SSD
 • ~10 watts to power a high performance hard drive
 – (can also buy a 1 watt lower-performance drive)
10-year Technology Cost/Terabyte Projections 2014-2023

- CGR for NAND Flash is -30%
- CGR for Disk is -15%
- CGR for Tape is -23%

Source: © Wikibon 2014, from Numerous Sources including Analysts, Consultants, IBM & Oracle.
HDD vs SSD: IOPS

<table>
<thead>
<tr>
<th>File</th>
<th>Read</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>16MB</td>
<td>9.37 iops</td>
<td>8.21 iops</td>
</tr>
<tr>
<td>4K</td>
<td>176 iops</td>
<td>311 iops</td>
</tr>
<tr>
<td>4K-64Thrd</td>
<td>405 iops</td>
<td>311 iops</td>
</tr>
<tr>
<td>512B</td>
<td>63 iops</td>
<td>304 iops</td>
</tr>
</tbody>
</table>

Score:

- Hitachi: 17 (Read) and 16 (Write)
- SanDisk: 450 (Read) and 410 (Write)

16MB: one file; 4K: random blocks, 4K-64Thrd: 4K random reads issued 64 at a time to device;

From http://www.thessdreview.com/featured/ssd-throughput-latency-iopsexplained/2/
HDD vs SSD: Throughput and latency

From http://www.thessdreview.com/featured/ssd-throughput-latency-iopsexplained/2/

© 2017 Gribble, Lazowska, Levy, Zahorjan, Zbikowski