
CSE 451 Autumn 2016
Final Solutions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

mean 77.53, median 79, stdev 12.03

I. Warm-up

(a) (15 points) Circle true or false for each statement (no need to justify your answers here).

True False In xv6 and JOS, a Bootstrap Processor sends a message (i.e., STARTUP
interprocessor interrupt) to wake up an Application Processor (AP). The
message contains the physical address the AP should start executing from.

Solution: T

True False Before paging is turned on in JOS, setting a breakpoint in GDB at a high
address (e.g., 0xf010000c) will not trigger the breakpoint.

Solution: T

True False The JOS kernel will not be interrupted by clock interrupts when it is exe-
cuting a system call in the kernel, because external interrupts are disabled
when in the kernel.

Solution: T

True False A Dune process can directly modify the CR3 control register, because it is
running in ring 0. As a comparison, a JOS user environment cannot do so
because it is running in ring 3.

Solution: T

True False Similarly to JOS, the xv6 file system uses inodes to store which file names
are associated with a directory.

Solution: F

Page 2 of 11

(b) (8 points) In JOS, the breakpoint test case (user/breakpoint.c) invokes the int instruction,
as follows:

void umain(int argc, char **argv)

{

asm volatile("int $3");

}

Ben Bitdiddle wants to understand whether this test case generates a break point exception
or a general protection fault from user space. Meanwhile, in inc/mmu.h, he notices a useful
macro SETGATE for setting up the IDT:

// Set up a normal interrupt/trap gate descriptor.

// - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.

// see section 9.6.1.3 of the i386 reference: "The difference between

// an interrupt gate and a trap gate is in the effect on IF (the

// interrupt-enable flag). An interrupt that vectors through an

// interrupt gate resets IF, thereby preventing other interrupts from

// interfering with the current interrupt handler. A subsequent IRET

// instruction restores IF to the value in the EFLAGS image on the

// stack. An interrupt through a trap gate does not change IF."

// - sel: Code segment selector for interrupt/trap handler

// - off: Offset in code segment for interrupt/trap handler

// - dpl: Descriptor Privilege Level -

// the privilege level required for software to invoke

// this interrupt/trap gate explicitly using an int instruction.

#define SETGATE(gate, istrap, sel, off, dpl) { ... }

Fill in the blanks given the following definitions of variables and constants:
• idt: the interrupt descriptor table.
• T_BRKPT: the trap number for breakpoint (i.e., 3).
• GD_KT: the global descriptor number for kernel text.
• Xbrkpt: the trap handler for breakpoint.

i. If Ben wants the breakpoint test case to generate a breakpoint exception, he should set
up the IDT for T_BRKPT as follows:

SETGATE(idt[T_BRKPT], 0 , GD_KT, &Xbrkpt, 3);

ii. If Ben wants the breakpoint test case to generate a general protection fault, he should set
up the IDT for T_BRKPT as follows:

SETGATE(idt[T_BRKPT], 0 , GD_KT, &Xbrkpt, 0);

Page 3 of 11

II. A few changes

Ben is proposing and implementing a few changes to JOS. Please help him decide whether these
changes are correct or not.

(a) (5 points) Ben doesn’t like the performance overhead incurred by system calls through the int
instruction, dispatching to individual system calls, etc. He decides to move the implementation
of sys_cputs, including all the code it uses, into user space, allowing user environments to
directly call the code. Will his fast sys_cputs work? Briefly explain why or why not.

Solution: No - the user space doesn’t have the permissions to access the VGA buffer or
I/O ports.

(b) (5 points) The use of the big kernel lock guarantees that only one CPU can run the JOS kernel
code at a time, but Ben doesn’t want to use separate kernel stacks for each CPU. He decides to
use a single, shared kernel stack. In addition, instead of calling lock_kernel() in the C function
trap() in kern/trap.c, he changes all his trap handlers in kern/trapentry.S to acquire the
big kernel lock at the very beginning; the lock acquisition code is written in assembly code
without using the stack. Is this new plan safe? If so, briefly explain why. If not, describe a
scenario in which using a shared kernel stack will go wrong.

Solution: No - this will corrupt the stack, because before entering the trap handler the
CPU has already pushed to the stack (old SS, ESP, etc.).

Page 4 of 11

III. Virtual memory

(a) (15 points) Check either “physical address” or “virtual address” for underlined values from
JOS (no need to justify your answers here).

The kernel pointer envs pointing to an array of the Env structures:
� physical address � virtual address

The user pointer at UENVS (0xeec00000) pointing to read-only copies of the Env structures:
� physical address � virtual address

The value of the %cr2 control register when a kernel page fault happened:
� physical address � virtual address

The value of the %cr2 control register when a page fault happened in user space:
� physical address � virtual address

The NVMe disk’s memory-mapped IO region starting from 0xfebf0000, indicated by its BAR 0:
� physical address � virtual address

Page 5 of 11

(b) In December 2016, Intel published a white paper, “5-Level Paging and 5-Level EPT,” which
describes a planned new paging mode for future Intel processors. Alyssa P. Hacker wants to
learn more about 5-level paging. Your job is to help Alyssa based on your experience with
2-level paging in JOS. Hint: you may want to read the questions before reading the excerpts.
The following are some (slightly modified) excerpts from Intel’s white paper:
Modern operating systems use address-translation support called paging. Paging translates
linear addresses (also known as virtual addresses), which are used by software, to physical
addresses, which are used to access memory (or memory-mapped I/O).
IA-32e mode is a mode of processor execution that extends the older 32-bit operation, known
as legacy mode. In IA-32e mode, linear addresses are 64 bits in size. However, the correspond-
ing paging mode (called IA-32e paging) does not use all 64 linear-address bits.
IA-32e paging does not use all 64 linear-address bits because processors limit the size of linear
addresses. This limit is enumerated by theCPUID instruction. Specifically, CPUID.80000008H:
EAX[bits 15:8] enumerates the number of linear-address bits (the maximum linear-address
width) supported by the processor. Processors that support 5-level paging are expected to
enumerate this value as 57.
Processors also limit the size of physical addresses and enumerate the limit using CPUID.
CPUID.80000008H:EAX[bits 7:0] enumerates the number of physical-address bits supported
by the processor, the maximum physical-address width. Processors that support 5-level paging
are expected to enumerate values up to 52.
The enumerated limitation on the linear-address width implies that paging translates only the
low 57 bits of each 64-bit linear address. After a linear address is generated but before it is
translated, the processor confirms that the address uses only the 57 bits that the processor
supports. The limitation to 57 linear-address bits results from the nature of IA-32e paging,
which is illustrated in the following figure:

Document Number: 335252-001, Revision: 1.0 11

2.5.1 Canonicality Checking on RIP Loads
The RIP register contains the offset of the current instruction pointer within the CS
segment. Because the processor treats the CS base address as zero in 64-bit mode, the
value of the RIP register in that mode is the linear address of the instruction pointer.

Operations that load RIP (including both instructions such as JMP as well as control
transfers through the IDT) check first whether the value to be loaded is canonical
relative to the current paging mode. If the processor determines that the address is not
canonical, the RIP load is not performed and a general-protection exception (#GP)
occurs.

Note: An instruction that would load RIP with a non-canonical address faults, meaning that
the return instruction pointer of the fault handler is the address of the faulting
instruction and not the non-canonical address whose load was attempted.

The canonicality checking performed by these operations uses 48-bit canonicality when
4-level paging is active. When 5-level paging is active, the checking is relaxed to
require only 57-bit canonicality.

The SYSCALL and SYSENTER instructions load RIP from the IA32_LSTAR and
IA32_SYSENTER_EIP MSRs, respectively. On processors that support only 4-level
paging, these instructions do not check that the values being loaded are canonical
because the WRMSR instruction ensures that each of these MSRs contains a value that
is 48-bit canonical. On processors that support 5-level paging, the checking by WRMSR
is relaxed to 57-bit canonicality (see Section 2.5.2). On such processors, an execution

Figure 2-1. Linear-Address Translation Using 5-Level Paging

PDE

Linear Address

Page Directory

PML4E

CR3

39 38

9 9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDPTE

01112202130 29

Page-Directory

47

9

PML5E

40

40

40

56
TableDirectoryDirectory PtrPML4PML5

Pointer Table

Page Table

PTE

9

40

Page 6 of 11

The processor performs IA-32e paging by traversing a 5-level hierarchy of paging structures
whose root structure resides at the physical address in control register CR3. Each paging
structure is 4-KBytes in size and comprises 512 8-byte entries. The processor uses the upper
45 bits of a linear address (bits 56:12), 9 bits at a time, to select paging-structure entries from
the hierarchy. The following items describe the translation process in more detail.

• Translation begins by identifying a 4-KByte naturally aligned PML5 table. It is located at
the physical address specified in bits 51:12 of CR3. A PML5 table comprises 512 64-bit
entries (PML5Es). A PML5E is selected using the physical address defined as follows.
– Bits 51:12 are from CR3.
– Bits 11:3 are bits 56:48 of the linear address.
– Bits 2:0 are all 0.

Because a PML5E is identified using bits 56:48 of the linear address, it controls access to
a 256-TByte region of the linear-address space.

• The next step of the translation process identifies a 4-KByte naturally aligned PML4 table.
It is located at the physical address specified in bits 51:12 of the PML5E. A PML4 table
comprises 512 64-bit entries (PML4Es). A PML4E is selected using the physical address
defined as follows.
– Bits 51:12 are from the PML5E.
– Bits 11:3 are bits 47:39 of the linear address.
– Bits 2:0 are all 0.

Because a PML4E is identified using bits 56:39 of the linear address, it controls access to
a 512-GByte region of the linear-address space.

• Once the PML4E is identified, bits 38:0 of the linear address determine the remainder of
the translation process, as illustrated in the figure from the previous page. Similarly to
PML5 and PML4, the translation process will identify a page-directory-pointer table, a
page-directory table, and a page table.

Because only bits 56:0 of a linear address are used in address-translation, the processor reserves
bits 63:57 for future expansion using a concept known as canonicality. A linear address is
57-bit canonical if bits 63:56 of the address are identical. Put differently, a linear address is
canonical only if bits 63:57 are a sign-extension of bit 56, which is the uppermost bit used in
linear-address translation.

When a 64-bit linear address is generated to access memory, the processor first confirms that
the address is canonical. If the address is not canonical, the memory access causes a fault, and
the processor makes no attempt to translate the address.

*** END OF EXCERPTS ***

Page 7 of 11

To make it easier to read, integer literals in this page are separated with an underscore. For
instance, we use 0x0000_cafe and 0x0000cafe interchangeably.

i. (3 points) Check one correct answer: 5-level paging allows up to of linear-address
space to be accessed at any given time.

� 248 bytes (256 terabytes)
� 252 bytes (4 petabytes)
� 257 bytes (128 petabytes)
� 264 bytes (16 exbibytes)

ii. (4 points) Check all that apply: which of the following linear addresses are considered
57-bit canonical?

� 0x0000_0000_0000_0000

� 0x00ff_0000_0000_0000

� 0xff80_0000_0000_0000

� 0xffff_ffff_ffff_ffff

iii. (10 points) Fill in the blanks with correct answers (no need to justify your answers here).
Suppose the value of CR3 is 0x0000_0000_1fff_0000. Below is the content of the PML5
table at physical address 0x0000_0000_1fff_0000:

511 0x0000_0000_0000_0001

… …
2 0x0000_0000_0123_6001

1 0x0000_0000_0123_5001

0 0x0000_0000_0123_4001

As described in the white paper, the PML5 table is 4-KBytes in size and has 512 64-
bit entries. For instance, the first entry has value 0x0000_0000_0123_4001 and the last
entry has value 0x0000_0000_0000_0001. Now consider the translation of linear address
0x0000_0000_0001_cafe (ignoring present and permission bits for this question).

• The physical address of the PML5 entry (PML5E) corresponding to linear address
0x0000_0000_0001_cafe is 0x0000_0000_1fff_0000 .

• The physical address of the PML4 entry (PML4E) corresponding to linear address
0x0000_0000_0001_cafe is 0x0000_0000_0123_4000 .

Page 8 of 11

IV. File system

boot
block

super
block

log
header

log
blocks

inode
blocks

free
bitmap

data
blocks

0 1 2 3 32 58 59

The disk layout of the xv6 file system is illustrated in the above figure:

• the super block is in block 1;
• the log header is in block 2 and the log is in blocks 3–31;
• inodes are in blocks 32–57;
• the bitmap of free blocks is in block 58; and
• data blocks start from block 59 to end of the disk.

To trace disk writes, Alyssa modifies iderw() in the IDE driver code (ide.c) to print the block
number of each block written. She boots xv6 with a fresh fs.img, which initially contains a few
files within the root directory (e.g., README). She then types in the command “rm README” to remove
the file. Alyssa observes the following output:

$ rm README

write 3

write 4

write 5

write 2

write 59

write 33

write 58

write 2

$

(a) (15 points) Match writes to their descriptions: the left side contains the last five writes ob-
served by Alyssa; for each write, choose a letter of the most appropriate description from the
right side and fill in the blank. Each letter may be used once, more than once, or not at all.

b write 2
e write 59
f write 33
h write 58
c write 2

a . update the super block
b. mark the transaction as “done” in the log
c . delete the transaction from the log
d. update the root directory’s inode
e . update the root directory’s data blocks
f . update README’s inode
g. update README’s data blocks
h. free README’s data blocks in the free bitmap

Page 9 of 11

(b) (9 points) Alyssa notices that xv6 does not issue the flush command to the disk. A modern
disk controller may reorder writes sent by the driver. For instance, the writes observed by
Alyssa are:

write 3, write 4, write 5, write 2, …
The disk controller may execute the writes in a different order, such as:

write 2, write 3, write 4, write 5, …
Alyssa worries that such reordering may violate the correctness of the xv6 file system (e.g.,
corrupting the file system after a power failure). Since the disk controller will not reorder
writes across a flush, she decides to modify xv6 and add a flush after every disk write. This
time, running “rm README” on a fresh fs.img produces the following trace:

write 3
1 flush

write 4
2 flush

write 5
3 flush

write 2
4 flush

write 59
5 flush

write 33
6 flush

write 58
7 flush

write 2
flush

Alyssa wonders which of these disk flushes are necessary to ensure correctness and which can
be safely removed. For each flush (except for the last one), there is a number to the left. List all
the flushes that Alyssa must keep, using their numbers (no need to justify your answer).

Solution: 3 4 7

(c) (3 points) Originally, an xv6 inode contains 12 direct block numbers and one singly indirect
block number. In the “big file” exercise, Alyssa modifies the xv6 file system to support doubly
indirect blocks: now an inode contains 11 direct block numbers, one singly indirect block num-
ber, and one doubly indirect block number. In the new file system, will running “rm README”
on a fresh fs.img produce the same number of disk writes? Briefly explain why or why not.

Solution: Yes - ”rm README” touches only the data blocks of the root directory. Its size is
small in a fresh file system image, so adding doubly indirect blocks won’t affect the writes.

Page 10 of 11

V. CSE 451

We would like to hear your opinions. Any answer, except no answer, will receive full credit.

(a) (2 points) For exercises and labs, did you work in pairs or on your own? Can you tell us why?

Solution: Most worked alone: hard to coordinate on time (13), didn’t know others in
class (7), could learn more (6), more efficient (4).

(b) (2 points) Are there any topics you would like to see added to or removed from the class?

Solution: Add: networking (9), more file systems (4), more concurrency (4), more security
and hacking (3), scheduling (3), among many others (e.g., linking, Rust, drivers, GUI, cloud).
Remove: paper reading (2).

(c) (2 points) What is the best aspect of CSE 451?

Solution: labs (16), understanding OS (15), staff (4).

(d) (2 points) What is the worst aspect of CSE 451?

Solution: bugs & debugging (19), no slides (4), final (3).

End — Enjoy the break!

Page 11 of 11

