Process management

- This module begins a series of topics on processes, threads, and synchronization
 - this is the most important part of the class
 - there definitely will be several questions on these topics on the midterm
- In this module: processes and process management
 - What is a “process”?
 - What’s the OS’s process namespace?
 - How are processes represented inside the OS?
 - What are the executing states of a process?
 - How are processes created?
 - How can this be made faster?
 - Shells
 - Signals
What is a “process”?

- The process is the OS’s abstraction for execution
 - A process is a program in execution
- Simplest (classic) case: a **sequential process**
 - An address space (an abstraction of memory)
 - A single thread of execution (an abstraction of the CPU)
- A sequential process is:
 - The unit of execution
 - The unit of scheduling
 - The dynamic (active) execution context
 - vs. the program – static, just a bunch of bytes

What’s “in” a process?

- A process consists of (at least):
 - An **address space**, containing
 - the code (instructions) for the running program
 - the data for the running program (static data, heap data, stack)
 - **CPU state**, consisting of
 - The program counter (PC), indicating the next instruction
 - The stack pointer
 - Other general purpose register values
 - A set of **OS resources**
 - open files, network connections, sound channels, ...
- In other words, it’s all the stuff you need to run the program
 - or to re-start it, if it’s interrupted at some point
A process’s address space (idealized)

0xFFFFF

address space

0x00000000

stack
(dynamic allocated mem)

SP

heap
(dynamic allocated mem)

static data
(data segment)

code
(text segment)

PC

The OS’s process namespace

• (Like most things, the particulars depend on the specific OS, but the principles are general)
• The name for a process is called a process ID (PID)
 – An integer
• The PID namespace is global to the system
 – Only one process at a time has a particular PID
• Operations that create processes return a PID
 – E.g., fork()
• Operations on processes take PIDs as an argument
 – E.g., kill(), wait(), nice()
Representation of processes by the OS

• The OS maintains a data structure to keep track of a process’s state
 – Called the process control block (PCB) or process descriptor
 – Identified by the PID
• OS keeps all of a process’s execution state in (or linked from) the PCB when the process isn’t running
 – PC, SP, registers, etc.
 – when a process is unscheduled, the execution state is transferred out of the hardware registers into the PCB
 – (when a process is running, its state is spread between the PCB and the CPU)
• Note: It’s natural to think that there must be some esoteric techniques being used
 – fancy data structures that you’d never think of yourself
 Wrong! It’s pretty much just what you’d think of!

The PCB

• The PCB is a data structure with many, many fields:
 – process ID (PID)
 – parent process ID
 – execution state
 – program counter, stack pointer, registers
 – address space info
 – UNIX user id, group id
 – scheduling priority
 – accounting info
 – pointers for state queues
• In Linux:
 – defined in task_struct (include/linux/sched.h)
 – over 95 fields!!!
PCBs and CPU state

- When a process is running, its CPU state is inside the CPU
 - PC, SP, registers
 - CPU contains current values
- When the OS gets control because of a …
 - Trap: Program executes a syscall
 - Exception: Program does something unexpected (e.g., page fault)
 - Interrupt: A hardware device requests service
 the OS saves the CPU state of the running process in that process’s PCB

- When the OS returns the process to the running state, it loads the hardware registers with values from that process’s PCB – general purpose registers, stack pointer, instruction pointer
- The act of switching the CPU from one process to another is called a context switch
 - systems may do 100s or 1000s of switches/sec.
 - takes a few microseconds on today’s hardware
- Choosing which process to run next is called scheduling
The OS kernel is not a process

- It’s just a block of code!
- (In a microkernel OS, many things that you normally think of as the operating system execute as user-mode processes. But the OS kernel is just a block of code.)

This is (a simplification of) what each of those PCBs looks like inside!

- Process ID
- Pointer to parent
- List of children
- Process state
- Pointer to address space descriptor
 - Program counter
 - Stack pointer
 - (all) register values
 - uid (user id)
 - gid (group id)
 - euid (effective user id)
- Open file list
- Scheduling priority
- Accounting info
- Pointers for state queues
- Exit (“return”) code value
Process execution states

- Each process has an **execution state**, which indicates what it's currently doing
 - **ready**: waiting to be assigned to a CPU
 - could run, but another process has the CPU
 - **running**: executing on a CPU
 - it's the process that currently controls the CPU
 - **waiting** (aka “blocked”): waiting for an event, e.g., I/O completion, or a message from (or the completion of) another process
 - cannot make progress until the event happens

- As a process executes, it moves from state to state
 - UNIX: run `ps`, STAT column shows current state
 - which state is a process in most of the time?

Process states and state transitions

- **running**
 - terminate
 - dispatch / schedule
 - interrupt (unschedule)
- **ready**
 - trap or exception (I/O, page fault, etc.)
 - interrupt (I/O complete)
 - create
- **blocked**
 - You can create and destroy processes!
State queues

- The OS maintains a collection of queues that represent the state of all processes in the system
 - typically one queue for each state
 - e.g., ready, waiting, ...
 - each PCB is queued onto a state queue according to the current state of the process it represents
 - as a process changes state, its PCB is unlinked from one queue, and linked onto another

- Once again, *this is just as straightforward as it sounds!* The PCBs are moved between queues, which are represented as linked lists. *There is no magic!*

- There may be many wait queues, one for each type of wait (particular device, timer, message, …)
PCBs and state queues

- PCBs are data structures
 - dynamically allocated inside OS memory
- When a process is created:
 - OS allocates a PCB for it
 - OS initializes PCB
 - (OS does other things not related to the PCB)
 - OS puts PCB on the correct queue
- As a process computes:
 - OS moves its PCB from queue to queue
- When a process is terminated:
 - PCB may be retained for a while (to receive signals, etc.)
 - eventually, OS deallocates the PCB

Process creation

- New processes are created by existing processes
 - creator is called the parent
 - created process is called the child
 - UNIX: do `ps`, look for PPID field
 - what creates the first process, and when?
Process creation semantics

- (Depending on the OS) child processes inherit certain attributes of the parent
 - Examples:
 - Open file table: implies stdin/stdout/stderr
 - On some systems, resource allocation to parent may be divided among children
- (In Unix) when a child is created, the parent may either wait for the child to finish, or continue in parallel
UNIX process creation details

- UNIX process creation through `fork()` system call
 - creates and initializes a new PCB
 - initializes kernel resources of new process with resources of parent (e.g., open files)
 - initializes PC, SP to be same as parent
 - creates a new address space
 - initializes new address space with a copy of the entire contents of the address space of the parent
 - places new PCB on the ready queue
- the `fork()` system call “returns twice”
 - once into the parent, and once into the child
 - returns the child’s PID to the parent
 - returns 0 to the child
 - `fork()` = “clone me”
testparent – use of fork()

```c
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
    char *name = argv[0];
    int pid = fork();
    if (pid == 0) {
        printf("Child of %s is %d\n", name, pid);
        return 0;
    } else {
        printf("My child is %d\n", pid);
        return 0;
    }
}
```
testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

exec() vs. fork()

- Q: So how do we start a new program, instead of just forking the old program?
- A: First fork, then exec
 - int exec(char * prog, char * argv[])
- exec()
 - stops the current process
 - loads program 'prog' into the address space
 - i.e., over-writes the existing process image
 - initializes hardware context, args for new program
 - places PCB onto ready queue
 - note: does not create a new process!
• So, to run a new program:
 - `fork()`
 - Child process does an `exec()`
 - Parent either waits for the child to complete, or not
Making process creation faster

- The semantics of fork() say the child’s address space is a copy of the parent’s
- Implementing fork() that way is slow
 - Have to allocate physical memory for the new address space
 - Have to set up child’s page tables to map new address space
 - Have to copy parent’s address space contents into child’s address space
 - Which you are likely to immediately blow away with an exec()
Method 1: vfork()

- vfork() is the older (now uncommon) of the two approaches we'll discuss
- Instead of “child’s address space is a copy of the parent’s,” the semantics are “child’s address space is the parent’s”
 - With a “promise” that the child won’t modify the address space before doing an execve()
 - Unenforced! You use vfork() at your own peril
 - When execve() is called, a new address space is created and it’s loaded with the new executable
 - Parent is blocked until execve() is executed by child
 - Saves wasted effort of duplicating parent’s address space, just to blow it away
Method 2: copy-on-write

- Retains the original semantics, but copies "only what is necessary" rather than the entire address space
- On fork():
 - Create a new address space
 - Initialize page tables with same mappings as the parent's (i.e., they both point to the same physical memory)
 - No copying of address space contents have occurred at this point – with the sole exception of the top page of the stack
 - Set both parent and child page tables to make all pages read-only
 - If either parent or child writes to memory, an exception occurs
 - When exception occurs, OS copies the page, adjusts page tables, etc.

UNIX shells

```c
int main(int argc, char **argv)
{
    while (1) {
        printf ("$ ");
        char *cmd = get_next_command();
        int pid = fork();
        if (pid == 0) {
            exec(cmd);
            panic("exec failed!");
        } else {
            wait(pid);
        }
    }
}
```
Truth in advertising …

• In Linux today, clone is replacing fork (and vfork)
 – clone has additional capabilities/options
• But you need to clearly understand fork as described here

• In Linux today, exec is not a system call; execve is the only “exec-like” system call
 – execve knows whether you have done a fork or a vfork by a flag in the PCB
• But you need to clearly understand exec as described here

Input/output redirection

• $./myprog < input.txt > output.txt # UNIX
 – each process has an open file table
 – by (universal) convention:
 • 0: stdin
 • 1: stdout
 • 2: stderr
• A child process inherits the parent’s open file table

• Redirection: the shell …
 – copies its current stdin/stdout open file entries
 – opens input.txt as stdin and output.txt as stdout
 – fork …
 – restore original stdin/stdout
Inter-process communication via signals

- Processes can register event handlers
 - Feels a lot like event handlers in Java, which ..
 - Feel sort of like catch blocks in Java programs
- When the event occurs, process jumps to event handler routine
- Used to catch exceptions
- Also used for inter-process (process-to-process) communication
 - A process can trigger an event in another process using signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Value</th>
<th>Action</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGHUP</td>
<td>1</td>
<td>Term</td>
<td>Hangup detected on controlling terminal or death of controlling process</td>
</tr>
<tr>
<td>SIGINT</td>
<td>2</td>
<td>Term</td>
<td>Interrupt from keyboard</td>
</tr>
<tr>
<td>SIGQUIT</td>
<td>3</td>
<td>Core</td>
<td>Quit from keyboard</td>
</tr>
<tr>
<td>SIGILL</td>
<td>4</td>
<td>Core</td>
<td>Illegal Instruction</td>
</tr>
<tr>
<td>SIGABRT</td>
<td>6</td>
<td>Core</td>
<td>Abort signal from abort(3)</td>
</tr>
<tr>
<td>SIGFPE</td>
<td>8</td>
<td>Core</td>
<td>Floating point exception</td>
</tr>
<tr>
<td>SIGKILL</td>
<td>9</td>
<td>Term</td>
<td>Kill signal</td>
</tr>
<tr>
<td>SIGSEGV</td>
<td>11</td>
<td>Core</td>
<td>Invalid memory reference</td>
</tr>
<tr>
<td>SIGPIPE</td>
<td>13</td>
<td>Term</td>
<td>Broken pipe: write to pipe with no read</td>
</tr>
<tr>
<td>SIGALRM</td>
<td>14</td>
<td>Term</td>
<td>Timer signal from alarm(2)</td>
</tr>
<tr>
<td>SIGTERM</td>
<td>15</td>
<td>Term</td>
<td>Termination signal</td>
</tr>
<tr>
<td>SIGUSR1</td>
<td>30,10,16</td>
<td>Term</td>
<td>User-defined signal 1</td>
</tr>
<tr>
<td>SIGUSR2</td>
<td>31,12,17</td>
<td>Term</td>
<td>User-defined signal 2</td>
</tr>
<tr>
<td>SIGCHLD</td>
<td>20,17,18</td>
<td>Ign</td>
<td>Child stopped or terminated</td>
</tr>
<tr>
<td>SIGCONT</td>
<td>19,18,25</td>
<td></td>
<td>Continue if stopped</td>
</tr>
<tr>
<td>SIGSTOP</td>
<td>17,19,23</td>
<td>Stop</td>
<td>Stop process</td>
</tr>
<tr>
<td>SIGTSTP</td>
<td>18,20,24</td>
<td>Stop</td>
<td>Stop typed at tty</td>
</tr>
<tr>
<td>SIGTTIN</td>
<td>21,21,26</td>
<td>Stop</td>
<td>tty input for background process</td>
</tr>
<tr>
<td>SIGTTOU</td>
<td>22,22,27</td>
<td>Stop</td>
<td>tty output for background process</td>
</tr>
</tbody>
</table>
Example use

• You're implementing Apache, a web server

• Apache reads a configuration file when it is launched
 – Controls things like what the root directory of the web files
 is, what permissions there are on pieces of it, etc.

• Suppose you want to change the configuration while
 Apache is running
 – If you restart the currently running Apache, you drop some
 unknown number of user connections

• Solution: send the running Apache process a signal
 – It has registered a signal handler that gracefully re-reads
 the configuration file