
The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

Unix is a general-purpose,multi-user,interactiveoperatingsystemfor the larger
Digital EquipmentCorporationPDP-11and the Interdata8/32 computers. It offers a
number of features seldom found even in larger operating systems, including

i A hierarchical file system incorporating demountable volumes,

ii Compatible file, device, and inter-process I/O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paperdiscussesthe natureand implementationof the file systemandof the usercommand
interface.

I. INTRODUCTION

There have been four versions of the Unix time-sharing system.
12 The earliest(circa 1969-70)ran on the Digital EquipmentCorporationPDP-7and-9 computers.The
secondversionranon theunprotectedPDP-11/20computer.Thethird incorporated multiprogramming and
ranon thePDP-11/34,/40, /45, /60, and/70 computers;it is theonedescribedin the previouslypublished
versionof this paper,andis alsothemostwidely usedtoday. This paperdescribesonly thefourth, current
systemthat runson the PDP-11/70and the Interdata8/32 computers.In fact, the differencesamongthe
varioussystemsis rathersmall;mostof therevisionsmadeto theoriginally publishedversionof this paper,
aside from those concerned with style, had to do with details of the implementation of the file system.

SincePDP-11Unix becameoperationalin February,1971,over600 installationshavebeenput into
service. Most of themareengagedin applicationssuchascomputerscienceeducation,thepreparationand
formattingof documentsandothertextualmaterial,thecollectionandprocessingof troubledatafrom vari-
ousswitchingmachineswithin theBell System,andrecordingandcheckingtelephoneserviceorders. Our
own installationis usedmainly for researchin operatingsystems,languages,computernetworks,andother
topics in computer science, and also for document preparation.

Perhapsthemostimportantachievementof Unix is to demonstratethata powerfuloperatingsystem
for interactiveuseneednot be expensiveeither in equipmentor in humaneffort: it canrun on hardware
costingas little as $40,000,and lessthan two man-yearswere spenton the main systemsoftware. We
hope,however,that usersfind that the most important characteristicsof the systemare its simplicity,

* Copyright1974,Associationfor ComputingMachinery,Inc., reprintedby permission.This electroniceditionof this pa-
per is a reprintof theversionappearingin TheBell SystemTechnicalJournal57 no.6, part2 (July-August1978). In turn,
thatwasa revisedversionof anarticlethatappearedin Communicationsof theACM, 17, No. 7 (July 1974),pp. 365-375.
That articlewasa revisedversionof a paperpresentedat the FourthACM Symposiumon OperatingSystemsPrinciples,
IBM ThomasJ. WatsonResearchCenter,Yorktown Heights,New York, October15-17,1973. Most of the differences
betweenversionsoccur between the C. ACM version and the BSTJ printing; we incorporated updated numbers and material
on portability.

- 2 -

elegance, and ease of use.

Besides the operating system proper, some major programs available under Unix are

C compiler
Text editor based on QED[1];
Assembler, linking loader, symbolic debugger
Phototypesetting and equation setting programs[2, 3]
Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pascal

Thereis a hostof maintenance,utility, recreationandnoveltyprograms,all written locally. TheUnix user
community,which numbersin the thousands,hascontributedmany moreprogramsand languages.It is
worth noting that the system is totallyself-supporting.All Unix softwareis maintainedon thesystem;like-
wise, this paperandall otherdocumentsin this issueweregeneratedandformattedby theUnix editorand
text formatting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/70on which the ResearchUnix systemis installedis a 16-bit word (8-bit byte) com-
puter with 768K bytes of core memory; the systemkernel occupies90K bytes about equally divided
betweencodeanddatatables. This system,however,includesa very largenumberof devicedriversand
enjoysa generousallotmentof spacefor I/O buffersandsystemtables;a minimal systemcapableof run-
ning the softwarementionedabovecanrequireas little as 96K bytesof corealtogether.Thereareeven
largerinstallations;seethedescriptionof thePWB/UNIX systems[4, 5], for example.There are also much
smaller, though somewhat restricted, versions of the system [6].

Our own PDP-11hastwo 200-Mb moving-headdisksfor file systemstorageandswapping. There
are 20 variable-speedcommunicationsinterfacesattachedto 300- and 1200-bauddatasets,and an addi-
tional 12 communicationlines hard-wiredto 9600-baudterminalsandsatellitecomputers.Therearealso
several2400- and 4800-baudsynchronouscommunicationinterfacesused for machine-to-machinefile
transfer. Finally, there is a variety of miscellaneousdevicesincluding nine-trackmagnetictape,a line
printer, a voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance of Unix software is written in the abovementioned C language [7].Early versions
of theoperatingsystemwerewritten in assemblylanguage,but duringthesummer of 1973, it was rewritten
in C. The size of the new system was about one-third greater than that of the old.Since the new systemnot
only becamemucheasierto understandand to modify but also includedmany functional improvements,
includingmultiprogrammingandtheability to sharereentrantcodeamongseveraluserprograms,we con-
sider this increase in size quite acceptable.

III. THE FILE SYSTEM

Themostimportantrole of thesystemis to providea file system.Fromthepoint of view of theuser,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file containswhateverinformationthe userplaceson it, for example,symbolicor binary (object)
programs.No particularstructuringis expectedby thesystem.A file of text consistssimply of a stringof
characters,with lines demarcatedby the newline character.Binary programsare sequencesof words as
theywill appearin corememorywhentheprogramstartsexecuting.A few userprogramsmanipulatefiles
with morestructure;for example,theassemblergenerates,andtheloaderexpects,anobjectfile in a partic-
ular format. However, the structure of files is controlled by the programs that use them, not by the system.

3.2 Directories

Directoriesprovidethemappingbetweenthenamesof files andthefiles themselves,andthusinduce
a structureon thefile systemasa whole. Eachuserhasa directory of his own files; he may also create sub-
directoriesto containgroupsof files convenientlytreatedtogether. A directory behavesexactly like an
ordinaryfile exceptthat it cannotbe written on by unprivilegedprograms,so that the systemcontrolsthe

- 3 -

contentsof directories. However,anyonewith appropriatepermissionmay reada directory just like any
other file.

Thesystemmaintainsseveraldirectoriesfor its own use. Oneof theseis theroot directory. All files
in thesystemcanbefoundby tracinga paththrougha chainof directoriesuntil thedesiredfile is reached.
The startingpoint for suchsearchesis often the root. Other systemdirectoriescontainall the programs
providedfor generaluse;that is, all thecommands. As will beseen,however,it is by no meansnecessary
that a program reside in one of these directories for it to be executed.

Filesarenamedby sequencesof 14 or fewercharacters.Whenthenameof a file is specifiedto the
system,it maybein theform of a path name, which is a sequenceof directorynamesseparatedby slashes,
‘‘/ ’’, andendingin a file name. If thesequencebeginswith a slash,thesearchbeginsin theroot directory.
The name/alpha/beta/gamma causesthe systemto searchthe root for directory alpha, then to search
alpha for beta, finally to find gamma in beta. gamma may be an ordinaryfile, a directory,or a special
file. As a limiting case, the name ‘‘/’’ refers to the root itself.

A pathnamenot startingwith ‘‘/ ’’ causesthesystemto beginthe searchin the user’scurrentdirec-
tory. Thus,the namealpha/beta specifiesthe file namedbeta in subdirectoryalpha of the currentdirec-
tory. Thesimplestkind of name,for example,alpha, refersto a file that itself is foundin thecurrentdirec-
tory. As another limiting case, the null file name refers to the current directory.

The samenon-directoryfile may appearin severaldirectoriesunderpossiblydifferent names.This
featureis called linking; a directoryentry for a file is sometimescalleda link. The Unix systemdiffers
from othersystemsin which linking is permittedin thatall links to a file haveequalstatus. That is, a file
doesnot exist within a particulardirectory;the directoryentry for a file consistsmerelyof its nameanda
pointer to the information actually describingthe file. Thus a file exists independentlyof any directory
entry, although in practice a file is made to disappear along with the last link to it.

Eachdirectoryalwayshasat leasttwo entries. The name‘‘ . ’’ in eachdirectoryrefersto the direc-
tory itself. Thusa programmayreadthecurrentdirectoryunderthename‘‘ . ’’ without knowing its com-
pletepathname. The name‘‘ . . ’’ by conventionrefersto the parentof the directoryin which it appears,
that is, to the directory in which it was created.

Thedirectorystructureis constrainedto havetheform of a rootedtree. Exceptfor thespecialentries
‘‘ . ’’ and‘‘ . . ’’, eachdirectorymustappearasanentry in exactlyoneotherdirectory,which is its parent.
The reasonfor this is to simplify the writing of programsthat visit subtreesof the directorystructure,and
more important,to avoid the separationof portionsof the hierarchy. If arbitrarylinks to directorieswere
permitted, it would be quite difficult to detect when the last connection from the root toa directorywassev-
ered.

3.3 Special files

Specialfiles constitutethemostunusualfeatureof the Unix file system. EachsupportedI/O device
is associatedwith at leastonesuchfile. Specialfiles arereadandwritten just like ordinarydisk files, but
requeststo reador write resultin activationof theassociateddevice. An entry for eachspecialfile resides
in directory/dev, althougha link maybemadeto oneof thesefiles just asit mayto anordinaryfile. Thus,
for example,to write on a magnetictapeonemay write on the file /dev/mt. Specialfiles exist for each
communicationline, eachdisk, eachtapedrive,andfor physicalmainmemory. Of course,theactivedisks
and the memory special file are protected from indiscriminate access.

Thereis a threefoldadvantagein treatingI/O devicesthis way: file anddeviceI/O areassimilar as
possible;file anddevicenameshavethesamesyntaxandmeaning,sothata programexpectinga file name
asa parametercanbepasseda devicename;finally, specialfiles aresubjectto thesameprotectionmecha-
nism as regular files.

3.4 Removable file systems

Although the root of the file systemis alwaysstoredon the samedevice,it is not necessarythat the
entirefile systemhierarchyresideon this device. There is amount system request with two arguments: the
nameof an existingordinaryfile, andthe nameof a specialfile whoseassociatedstoragevolume(e.g.,a
disk pack)shouldhavethe structureof an independentfile systemcontainingits own directoryhierarchy.

- 4 -

Theeffectof mount is to causereferencesto the heretoforeordinaryfile to refer insteadto the root direc-
tory of thefile systemon theremovablevolume. In effect,mount replacesa leaf of thehierarchytree(the
ordinaryfile) by a whole new subtree(the hierarchystoredon the removablevolume). After the mount,
thereis virtually no distinctionbetweenfiles on theremovablevolumeandthosein thepermanentfile sys-
tem. In our installation,for example,the root directory resideson a small partition of one of our disk
drives, while the other drive, which containsthe user’s files, is mountedby the systeminitialization
sequence.A mountablefile systemis generatedby writing on its correspondingspecialfile. A utility pro-
gram is available to create an empty file system, or one may simply copy an existing file system.

Thereis only oneexceptionto the rule of identical treatmentof files on different devices:no link
may exist betweenone file systemhierarchyandanother. This restrictionis enforcedso as to avoid the
elaboratebookkeepingthat would otherwisebe required to assureremoval of the links wheneverthe
removable volume is dismounted.

3.5 Protection

Although the accesscontrol schemeis quite simple,it hassomeunusualfeatures.Eachuserof the
systemis assigneda uniqueuseridentificationnumber. Whena file is created,it is markedwith the user
ID of its owner. Also given for new files is asetof tenprotectionbits. Nine of thesespecifyindependently
read,write, andexecutepermissionfor the ownerof the file, for othermembersof his group,andfor all
remaining users.

If thetenthbit is on, thesystemwill temporarilychangetheuseridentification(hereafter,userID) of
thecurrentuserto thatof thecreatorof thefile wheneverthefile is executedasa program. This changein
userID is effectiveonly during theexecutionof theprogramthatcalls for it. Theset-user-IDfeaturepro-
videsfor privilegedprogramsthat may usefiles inaccessibleto otherusers. For example,a programmay
keepan accountingfile that shouldneitherbe readnor changedexceptby the programitself. If the set-
user-IDbit is on for the program,it may accessthe file althoughthis accessmight be forbiddento other
programsinvokedby the given program’suser. Sincethe actualuserID of the invokerof anyprogramis
alwaysavailable,set-user-IDprogramsmay take any measuresdesiredto satisfy themselvesas to their
invoker’s credentials.This mechanismis usedto allow usersto executethe carefully written commands
that call privileged systementries. For example,thereis a systementry invokableonly by the ‘‘super-
user’’ (below)thatcreatesanemptydirectory. As indicatedabove,directoriesareexpectedto haveentries
for ‘‘ . ’’ and ‘‘ . . ’’. The commandwhich createsa directory is ownedby the super-userandhasthe set-
user-IDbit set. After it checksits invoker’sauthorizationto createthespecifieddirectory,it createsit and
makes the entries for ‘‘. ’’ and ‘‘ . . ’’.

Becauseanyonemay set the set-user-IDbit on one of his own files, this mechanismis generally
availablewithout administrativeintervention. For example,this protectionschemeeasilysolvestheMOO
accounting problem posed by ‘‘Aleph-null.’’ [8]

The systemrecognizesoneparticularuserID (that of the ‘‘super-user’’) asexemptfrom the usual
constraintson file access;thus(for example),programsmaybewritten to dumpandreloadthe file system
without unwanted interference from the protection system.

3.6 I/O calls

Thesystemcalls to do I/O aredesignedto eliminatethedifferencesbetweenthevariousdevicesand
stylesof access.Thereis no distinction between ‘‘random’’ and ‘‘sequential’’ I/O, nor is any logical record
size imposed by the system.The sizeof anordinaryfile is determinedby thenumberof byteswritten on it;
no predetermination of the size of a file is necessary or possible.

To illustrate the essentialsof I/O, someof the basiccalls aresummarizedbelow in an anonymous
languagethat will indicatethe requiredparameterswithout gettinginto theunderlyingcomplexities.Each
call to the systemmay potentially result in an error return,which for simplicity is not representedin the
calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open(name, flag)

- 5 -

wherename indicatesthenameof thefile. An arbitrarypathnamemaybegiven. The flag argumentindi-
cates whether the file is to be read, written, or ‘‘updated,’’ that is, read and written simultaneously.

The returnedvalue filep is calleda file descriptor. It is a small integerusedto identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To createa new file or completelyrewrite an old one,thereis a create systemcall that createsthe
givenfile if it doesnot exist,or truncatesit to zerolengthif it doesexist;create alsoopensthenewfile for
writing and, likeopen, returns a file descriptor.

The file systemmaintainsno locks visible to the user,nor is thereany restrictionon the numberof
userswho may havea file openfor readingor writing. Although it is possiblefor thecontentsof a file to
becomescrambledwhentwo userswrite on it simultaneously,in practicedifficulties do not arise. We take
theview that locksareneithernecessarynor sufficient,in our environment,to preventinterferencebetween
usersof the samefile. They areunnecessarybecausewe arenot facedwith large,single-file databases
maintainedby independentprocesses.They areinsufficient becauselocks in the ordinarysense,whereby
oneuseris preventedfrom writing on a file thatanotheruseris reading,cannotpreventconfusionwhen,for
example, both users are editing a file with an editor that makes a copy of the file being edited.

Thereare,however,sufficient internal interlocksto maintainthe logical consistencyof the file sys-
tem whentwo usersengagesimultaneouslyin activitiessuchaswriting on the samefile, creatingfiles in
the same directory, or deleting each other’s open files.

Exceptasindicatedbelow,readingandwriting aresequential.This meansthat if a particularbyte in
the file wasthe last byte written (or read),the next I/O call implicitly refersto the immediatelyfollowing
byte. For eachopenfile thereis a pointer,maintainedinsidethe system,that indicatesthe next byte to be
read or written.If n bytes are read or written, the pointer advances byn bytes.

Once a file is open, the following calls may be used:

n = read(filep, buffer, count)
n = write(filep, buffer, count)

Up to count bytesaretransmittedbetweenthefile specifiedby filep andthebytearrayspecifiedby buffer.
Thereturnedvaluen is thenumberof bytesactuallytransmitted.In thewrite case,n is thesameascount
exceptunderexceptionalconditions,suchas I/O errorsor end of physicalmediumon specialfiles; in a
read, however,n maywithout errorbelessthancount. If thereadpointeris soneartheendof thefile that
readingcount characterswould causereadingbeyondtheend,only sufficientbytesaretransmittedto reach
the endof the file; also,typewriter-liketerminalsneverreturnmorethanoneline of input. Whena read
call returnswith n equalto zero,the endof the file hasbeenreached.For disk files this occurswhenthe
readpointerbecomesequalto thecurrentsizeof the file. It is possible to generate an end-of-file from a ter-
minal by use of an escape sequence that depends on the device used.

Bytes written affect only thosepartsof a file implied by the position of the write pointer and the
count;no otherpartof thefile is changed.If thelastbytelies beyondtheendof thefile, thefile is madeto
grow as needed.

To do random(direct-access)I/O it is only necessaryto movethe reador write pointerto theappro-
priate location in the file.

location = lseek(filep, offset, base)

The pointer associated withfilep is moved to a positionoffset bytesfrom thebeginningof thefile, from the
currentpositionof thepointer,or from theendof thefile, dependingon base. offset maybenegative.For
somedevices(e.g.,papertapeandterminals)seekcalls areignored. Theactualoffset from the beginning
of the file to which the pointer was moved is returned inlocation.

Thereareseveraladditionalsystementrieshavingto do with I/O andwith the file systemthat will
not bediscussed.For example:closea file, getthestatusof a file, change the protection mode or the owner
of a file, create a directory, make a link to an existing file, delete a file.

- 6 -

IV. IMPLEMENTATION OF THE FILE SYSTEM

As mentionedin Section3.2above,a directoryentrycontainsonly a namefor theassociatedfile and
a pointer to the file itself. This pointer is an integercalled the i-number(for index number)of the file.
Whenthefile is accessed,its i-numberis usedasanindexinto a systemtable(the i-list) storedin a known
part of the deviceon which the directoryresides.The entry found thereby(the file’s i-node) containsthe
description of the file:

i the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

v time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory

vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of anopen or create system call is to turn thepathnamegivenby theuserinto ani-numberby
searchingthe explicitly or implicitly nameddirectories. Once a file is open, its device, i-number,and
read/writepointerarestoredin a systemtableindexedby thefile descriptorreturnedby theopen or create.
Thus,duringa subsequentcall to reador write the file, thedescriptormaybeeasilyrelatedto theinforma-
tion necessary to access the file.

Whena newfile is created,ani-nodeis allocatedfor it anda directoryentryis madethatcontainsthe
nameof thefile andthei-nodenumber. Making a link to anexisting file involves creating a directory entry
with thenewname,copyingthei-numberfrom theoriginal file entry,andincrementingthelink-countfield
of the i-node. Removing(deleting)a file is doneby decrementingthelink-countof thei-nodespecifiedby
its directoryentry anderasingthe directoryentry. If the link-count dropsto 0, any disk blocksin the file
are freed and the i-node is de-allocated.

Thespaceon all disksthatcontaina file systemis dividedinto a numberof 512-byteblockslogically
addressedfrom 0 up to a limit that dependson the device. Thereis spacein the i-nodeof eachfile for 13
deviceaddresses.For nonspecialfiles, the first 10 deviceaddressespoint at the first 10 blocksof the file.
If the file is largerthan10 blocks,the 11 deviceaddresspoints to an indirect block containingup to 128
addressesof additionalblocksin the file. Still largerfiles usethe twelfth deviceaddressof the i-nodeto
point to a double-indirectblock naming128 indirect blocks,eachpointing to 128 blocks of the file. If
required,the thirteenthdevice addressis a triple-indirect block. Thus files may conceptuallygrow to
[(10+128+128ˆ2+128ˆ3)*512]bytes. Onceopened,bytesnumberedbelow5120canbe readwith a single
disk access;bytesin therange5120to 70,656requiretwo accesses;bytesin therange70,656to 8,459,264
requirethreeaccesses;bytesfrom thereto the largestfile (1,082,201,088)requirefour accesses.In prac-
tice, a device cache mechanism (see below) proves effective in eliminating most of the indirect fetches.

The foregoingdiscussionappliesto ordinaryfiles. Whenan I/O requestis madeto a file whosei-
nodeindicatesthat it is special,the last 12 deviceaddresswordsareimmaterial,andthe first specifiesan
internaldevicename, which is interpretedasa pair of numbersrepresenting,respectively,a devicetypeand
subdevicenumber. The devicetype indicateswhich systemroutinewill dealwith I/O on that device;the
subdevice number selects, for example, a diskdrive attachedto a particularcontrolleror oneof severalsim-
ilar terminal interfaces.

In this environment,the implementationof the mount systemcall (Section3.4) is quite straightfor-
ward. mount maintainsa systemtablewhoseargumentis the i-numberanddevicenameof the ordinary
file specifiedduringthemount, andwhosecorrespondingvalueis thedevicenameof the indicatedspecial
file. This tableis searchedfor eachi-number/devicepair that turnsup while a pathnameis beingscanned
during anopen or create; if a match is found, the i-numberis replacedby thei-numberof theroot directory
and the device name is replaced by the table value.

To the user,both readingand writing of files appearto be synchronousand unbuffered. That is,
immediately after return from a read call the data are available; conversely,after a write the user’s
workspacemay be reused. In fact, the systemmaintainsa rathercomplicatedbuffering mechanismthat

- 7 -

reducesgreatlythenumberof I/O operationsrequiredto accessa file. Supposea write call is madespeci-
fying transmissionof a single byte. The systemwill searchits buffers to seewhetherthe affecteddisk
block currentlyresidesin mainmemory;if not, it will bereadin from thedevice. Thentheaffectedbyteis
replacedin thebuffer andanentry is madein a list of blocksto bewritten. Thereturnfrom thewrite call
may thentakeplace,althoughtheactualI/O maynot becompleteduntil a later time. Conversely,if a sin-
gle byte is read,thesystemdetermineswhetherthesecondarystorageblock in which thebyte is locatedis
alreadyin oneof thesystem’sbuffers;if so,thebytecanbereturnedimmediately. If not, theblock is read
into a buffer and the byte picked out.

The systemrecognizeswhena programhasmadeaccessesto sequentialblocksof a file, andasyn-
chronouslypre-readsthe next block. This significantly reducesthe runningtime of mostprogramswhile
adding little to system overhead.

A programthat readsor writesfiles in unitsof 512byteshasanadvantageovera programthat reads
or writesa singlebyteat a time,but thegainis not immense;it comesmainly from the avoidance of system
overhead.If a programis usedrarely or doesno greatvolume of I/O, it may quite reasonablyreadand
write in units as small as it wishes.

Thenotionof the i-list is anunusualfeatureof Unix. In practice,this methodof organizingthe file
systemhasprovedquite reliableandeasyto dealwith. To thesystemitself, oneof its strengthsis the fact
that eachfile hasa short,unambiguousnamerelatedin a simple way to the protection,addressing,and
otherinformationneededto accessthefile. It alsopermitsa quitesimpleandrapidalgorithmfor checking
theconsistencyof a file system,for example,verificationthat theportionsof eachdevicecontaininguseful
informationandthosefree to be allocatedaredisjoint andtogetherexhaustthe spaceon the device. This
algorithmis independentof the directoryhierarchy,becauseit needonly scanthe linearly organizedi-list.
At thesametime the notion of the i-list induces certain peculiarities not found in other file system organiza-
tions. For example,thereis thequestionof who is to bechargedfor the spacea file occupies,becauseall
directoryentriesfor a file haveequalstatus.Chargingtheownerof a file is unfair in general,for oneuser
may createa file, anothermay link to it, and the first usermay deletethe file. The first useris still the
ownerof thefile, but it shouldbechargedto theseconduser. The simplest reasonably fair algorithm seems
to be tospreadthechargesequallyamonguserswho havelinks to a file. Many installationsavoidtheissue
by not charging any fees at all.

V. PROCESSES AND IMAGES

An image is acomputerexecutionenvironment.It includesa memoryimage,generalregistervalues,
status of open files, current directory and the like.An image is the current state of a pseudo-computer.

A process is theexecutionof an image. While theprocessoris executingon behalfof a process,the
imagemust residein main memory;during the executionof otherprocessesit remainsin main memory
unless the appearance of an active, higher-priority process forces it to be swapped out to the disk.

Theuser-memorypartof animageis dividedinto threelogical segments.Theprogramtext segment
beginsat location0 in the virtual addressspace.During execution,this segmentis write-protectedanda
singlecopyof it is sharedamongall processesexecutingthe sameprogram. At the first hardwareprotec-
tion byte boundaryabovethe programtext segmentin thevirtual addressspacebeginsa non-shared,writ-
abledatasegment,the sizeof which may be extendedby a systemcall. Startingat the highestaddressin
thevirtual addressspaceis a stacksegment,which automatically grows downward as the stack pointer fluc-
tuates.

5.1 Processes

Exceptwhile thesystemis bootstrappingitself into operation,a newprocesscancomeinto existence
only by use of thefork system call:

processid = fork()

Whenfork is executed,the processsplits into two independentlyexecutingprocesses.The two processes
haveindependentcopiesof theoriginal memoryimage,andshareall openfiles. Thenewprocessesdiffer
only in that one is considered the parentprocess:in theparent,thereturnedprocessid actuallyidentifiesthe

- 8 -

child process and is never 0, while in the child, the returned value is always 0.

Becausethevaluesreturnedby fork in theparentandchild processaredistinguishable,eachprocess
may determine whether it is the parent or child.

5.2 Pipes

Processesmaycommunicatewith relatedprocessesusingthe samesystemread andwrite calls that
are used for file-system I/O.The call:

filep = pipe()

returnsa file descriptorfilep andcreatesan inter-processchannelcalleda pipe. This channel,like other
openfiles, is passedfrom parentto child processin the imageby the fork call. A read usinga pipe file
descriptorwaitsuntil anotherprocesswritesusingthe file descriptorfor thesamepipe. At this point, data
arepassedbetweenthe imagesof the two processes.Neitherprocessneedknow thata pipe,ratherthanan
ordinary file, is involved.

Although inter-processcommunicationvia pipesis a quitevaluabletool (seeSection6.2), it is not a
completelygeneralmechanism,becausethe pipe must be setup by a commonancestorof the processes
involved.

5.3 Execution of programs

Another major system primitive is invoked by

execute(file, arg1, arg2, ... , argn)

which requeststhe systemto readin andexecutethe programnamedby file, passingit string arguments
arg1, arg2, ..., argn. All the codeanddatain the processinvoking execute is replacedfrom the file, but
openfiles, currentdirectory,andinter-processrelationshipsareunaltered.Only if the call fails, for exam-
ple becausefile could not be found or becauseits execute-permissionbit wasnot set,doesa return take
place from theexecute primitive; it resembles a ‘‘jump’’ machine instruction rather than a subroutine call.

5.4 Process synchronization

Another process control system call:

processid = wait(status)

causesits caller to suspendexecutionuntil oneof its childrenhascompletedexecution.Thenwait returns
theprocessid of the terminatedprocess.An errorreturnis takenif thecalling processhasno descendants.
Certain status from the child process is also available.

5.5 Termination

Lastly:

exit(status)

terminatesa process,destroysits image,closesits openfiles, and generallyobliteratesit. The parentis
notified throughthe wait primitive, andstatus is madeavailableto it. Processesmay alsoterminateasa
result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For most users,communicationwith the systemis carriedon with the aid of a programcalled the
shell. The shell is a command-lineinterpreter:it readslines typed by the user and interpretsthem as
requeststo executeotherprograms.(Theshell is describedfully elsewhere[9], so this sectionwill discuss
only the theory of its operation.) In simplestform, a commandline consistsof the commandnamefol-
lowed by arguments to the command, all separated by spaces:

command arg1 arg2 ... argn

- 9 -

The shell splits up the commandnameand the argumentsinto separatestrings. Then a file with name
command is sought;command may bea pathnameincluding the ‘‘/’’ characterto specifyany file in the
system. If command is found, it is broughtinto memoryandexecuted.The argumentscollectedby the
shell areaccessibleto thecommand.Whenthecommandis finished,theshell resumesits own execution,
and indicates its readiness to accept another command by typing a prompt character.

If file command cannotbefound,theshellgenerallyprefixesa stringsuchas/bin/ to command and
attemptsagain to find the file. Directory /bin containscommandsintendedto be generallyused. (The
sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

Thediscussionof I/O in SectionIII aboveseemsto imply thateveryfile usedby a programmustbe
openedor createdby the programin order to get a file descriptorfor the file. Programsexecutedby the
shell, however,startoff with threeopenfiles with file descriptors0, 1, and2. As sucha programbegins
execution,file 1 is openfor writing, andis bestunderstoodasthe standardoutput file. Exceptundercir-
cumstancesindicatedbelow, this file is the user’sterminal. Thusprogramsthat wish to write informative
information ordinarily usefile descriptor1. Conversely,file 0 startsoff openfor reading,andprograms
that wish to read messages typed by the user read this file.

Theshell is ableto changethestandardassignmentsof thesefile descriptorsfrom theuser’sterminal
printerandkeyboard. If oneof theargumentsto a commandis prefixedby ‘‘>’’, file descriptor1 will, for
the duration of the command, refer to the file named after the ‘‘>’’.For example:

ls

ordinarily lists, on the typewriter, the names of the files in the current directory.The command:

ls >there

createsa file calledthere andplacesthe listing there. Thusthe argument>there means‘‘place outputon
there.’’ On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard.The command

ed <script

interpretsscript as a file of editor commands; thus ‘‘<script’’ means ‘‘take input fromscript.’’

Althoughthe file namefollowing ‘‘<’’ or ‘‘>’’ appearsto beanargumentto thecommand,in fact it
is interpretedcompletelyby the shell andis not passedto the commandat all. Thusno specialcodingto
handleI/O redirectionis neededwithin eachcommand;the commandneedmerely usethe standardfile
descriptors 0 and 1 where appropriate.

File descriptor2 is, like file 1, ordinarily associatedwith the terminal output stream. When an
output-diversionrequestwith ‘‘>’’ is specified,file 2 remainsattachedto the terminal,so that commands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extensionof the standardI/O notion is usedto direct output from onecommandto the input of
another.A sequenceof commandsseparatedby verticalbarscausestheshell to executeall thecommands
simultaneouslyandto arrangethat thestandardoutputof eachcommandbedeliveredto thestandardinput
of the next command in the sequence.Thus in the command line:

ls  pr −2  opr

ls lists the namesof the files in the currentdirectory; its output is passedto pr, which paginatesits input
with datedheadings.(Theargument‘‘ −2’’ requestsdouble-columnoutput.) Likewise,theoutputfrom pr
is input toopr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

- 10 -

ls >temp1
pr −2 <temp1 >temp2
opr <temp2

followed by removalof thetemporaryfiles. In theabsenceof theability to redirectoutputandinput,a still
clumsiermethodwould havebeento requirethe ls commandto acceptuserrequeststo paginateits output,
to print in multi-columnformat,andto arrangethat its outputbe deliveredoff-line. Actually it would be
surprising,andin fact unwisefor efficiency reasons,to expectauthorsof commandssuchas ls to provide
such a wide variety of output options.

A programsuchas pr which copiesits standardinput to its standardoutput (with processing)is
calleda filter. Somefilters that we havefound usefulperformcharactertransliteration,selectionof lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separators; multitasking

Anotherfeatureprovidedby theshell is relativelystraightforward.Commandsneednot beon differ-
ent lines; instead they may be separated by semicolons:

ls; ed

will first list the contents of the current directory, then enter the editor.

A relatedfeatureis moreinteresting. If a commandis followed by ‘‘ &,’’ the shell will not wait for
thecommandto finish beforepromptingagain;instead,it is readyimmediatelyto accepta newcommand.
For example:

as source >output &

causessource to beassembled,with diagnosticoutputgoing to output; no matterhow long the assembly
takes,the shell returnsimmediately. Whenthe shell doesnot wait for the completionof a command,the
identificationnumberof the processrunningthat commandis printed. This identificationmay be usedto
wait for the completion of the command or to terminate it.The ‘‘&’’ may be used several times in a line:

as source >output & ls >files &

doesboth theassemblyandthe listing in the background.In theseexamples,anoutputfile otherthanthe
terminalwasprovided;if this hadnot beendone,the outputsof the variouscommandswould havebeen
intermingled.

The shell also allows parentheses in the above operations.For example:

(date; ls) >x &

writes the currentdateandtime followed by a list of the currentdirectoryonto the file x. The shell also
returns immediately for another request.

6.4 The shell as a command; command files

The shell is itself a command, and may be called recursively.Suppose filetryout contains the lines:

as source
mv a.out testprog
testprog

The mv commandcausesthe file a.out to be renamedtestprog. a.out is the (binary)outputof the assem-
bler, readyto be executed.Thus if the threelines abovewere typed on the keyboard,source would be
assembled,theresultingprogramrenamedtestprog, andtestprog executed.Whenthe linesarein tryout,
the command:

sh <tryout

would cause the shellsh to execute the commands sequentially.

The shell has further capabilities,including the ability to substituteparametersand to construct

- 11 -

argumentlists from a specifiedsubsetof the file namesin a directory. It alsoprovidesgeneralconditional
and looping constructions.

6.5 Implementation of the shell

Theoutlineof theoperationof theshell cannow beunderstood.Most of the time, theshell is wait-
ing for the userto typea command.Whenthenewlinecharacterendingthe line is typed,theshell’sread
call returns. Theshellanalyzesthecommandline, puttingtheargumentsin a form appropriatefor execute.
Thenfork is called. Thechild process,whosecodeof courseis still that of the shell,attemptsto perform
anexecute with the appropriatearguments.If successful,this will bring in andstartexecutionof the pro-
gramwhosenamewasgiven. Meanwhile,the otherprocessresultingfrom the fork, which is the parent
process,waits for the child process to die.Whenthis happens,theshellknowsthecommandis finished,so
it types its prompt and reads the keyboard to obtain another command.

Given this framework,the implementationof backgroundprocessesis trivial; whenevera command
line contains‘‘ &,’’ theshellmerelyrefrainsfrom waiting for theprocessthatit createdto executethecom-
mand.

Happily,all of this mechanismmeshesvery nicely with thenotionof standardinput andoutputfiles.
Whena processis createdby thefork primitive, it inheritsnot only the memory image of its parent but also
all the files currently openin its parent,including thosewith file descriptors0, 1, and 2. The shell, of
course,usesthesefiles to readcommandlinesandto write its promptsanddiagnostics,andin theordinary
caseits children� the commandprograms� inherit themautomatically. Whenan argumentwith ‘‘<’’ or
‘‘>’’ is given,however,the offspring process,just beforeit performsexecute, makesthe standardI/O file
descriptor(0 or 1, respectively)refer to the namedfile. This is easybecause,by agreement,the smallest
unusedfile descriptoris assignedwhena newfile is opened(or created); it is only necessaryto closefile 0
(or 1) andopenthe namedfile. Becausethe processin which the commandprogramrunssimply termi-
nateswhenit is through,the association between a file specified after ‘‘<’’ or ‘‘>’’ and file descriptor 0 or 1
is endedautomaticallywhenthe processdies. Thereforethe shell neednot know the actualnamesof the
files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard I/O redirection with pipes used instead of files.

In ordinarycircumstances,themain loop of theshell neverterminates.(Themain loop includesthe
branchof the return from fork belongingto the parentprocess;that is, the branchthat doesa wait, then
readsanothercommandline.) Theonething thatcausestheshell to terminateis discoveringanend-of-file
condition on its input file.Thus, when the shell is executed as a command with a given input file, as in:

sh <comfile

thecommandsin comfile will beexecuteduntil theendof comfile is reached;thentheinstanceof theshell
invokedby sh will terminate. Becausethis shell processis the child of anotherinstanceof the shell, the
wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

Theinstancesof theshell to which userstypecommandsarethemselveschildrenof anotherprocess.
The last stepin the initialization of the systemis the creationof a singleprocessandthe invocation(via
execute) of a programcalledinit. Therole of init is to createoneprocessfor eachterminalchannel.The
varioussubinstancesof init opentheappropriateterminalsfor input andoutputon files 0, 1, and 2, waiting,
if necessary,for carrierto beestablishedon dial-up lines. Thena messageis typedout requestingthat the
userlog in. Whenthe usertypesa nameor otheridentification,theappropriateinstanceof init wakesup,
receivesthe log-in line, andreadsa passwordfile. If the user’snameis found,andif he is ableto supply
the correctpassword,init changesto the user’sdefaultcurrentdirectory,setsthe process’suserID to that
of the personlogging in, andperformsan execute of the shell. At this point, the shell is readyto receive
commands and the logging-in protocol is complete.

Meanwhile,the mainstreampath of init (the parentof all the subinstancesof itself that will later
becomeshells)doesa wait. If oneof thechild processesterminates,eitherbecausea shell foundanendof
file or becausea usertypedan incorrectnameor password,this pathof init simply recreatesthe defunct

- 12 -

process,which in turn reopensthe appropriateinput and output files and typesanotherlog-in message.
Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as describedaboveis designedto allow usersfull accessto the facilities of the system,
becauseit will invoke the executionof any programwith appropriateprotectionmode. Sometimes,how-
ever, a different interface to the system is desirable, and this feature is easily arranged for.

Recallthataftera userhassuccessfullyloggedin by supplyinga nameandpassword,init ordinarily
invokestheshell to interpret command lines.The user’s entry in the password file may contain the name of
a programto be invokedafter log-in insteadof the shell. This programis free to interpretthe user’smes-
sages in any way it wishes.

For example,thepasswordfile entriesfor usersof a secretarialeditingsystemmight specifythat the
editored is to beusedinsteadof theshell. Thuswhenusersof theeditingsystemlog in, theyareinside the
editorandcanbeginwork immediately;also,they canbepreventedfrom invoking programsnot intended
for their use. In practice,it hasproveddesirableto allow a temporaryescapefrom theeditorto executethe
formatting program and other utilities.

Severalof thegames(e.g.,chess,blackjack,3D tic-tac-toe)availableon thesystemillustratea much
moreseverelyrestrictedenvironment.For eachof these,anentryexistsin thepasswordfile specifyingthat
theappropriategame-playingprogramis to be invokedinsteadof theshell. Peoplewho log in asa player
of oneof thesegamesfind themselveslimited to thegameandunableto investigatethe(presumablymore
interesting) offerings of the Unix system as a whole.

VII. TRAPS

The PDP-11hardwaredetectsa numberof programfaults, suchasreferencesto non-existentmem-
ory, unimplementedinstructions,andodd addressesusedwherean evenaddressis required. Suchfaults
causethe processorto trap to a systemroutine. Unlessother arrangementshavebeenmade,an illegal
actioncausesthesystemto terminatetheprocessandto write its imageon file core in the current directory.
A debugger can be used to determine the state of the program at the time of the fault.

Programsthat are looping, that produceunwantedoutput, or about which the user has second
thoughtsmaybehaltedby theuseof the interrupt signal,which is generatedby typing the‘‘delete’’ char-
acter. Unlessspecialactionhasbeentaken,this signalsimply causestheprogramto ceaseexecutionwith-
out producinga core file. Thereis alsoa quit signalusedto forceanimagefile to beproduced.Thuspro-
grams that loop unexpectedly may be halted and the remains inspected without prearrangement.

Thehardware-generatedfaultsandtheinterruptandquit signalscan,by request,beeitherignoredor
caughtby a process.For example,theshell ignoresquits to preventa quit from logging theuserout. The
editorcatchesinterruptsandreturnsto its commandlevel. This is usefulfor stoppinglong printoutswith-
out losing work in progress(the editor manipulatesa copy of the file it is editing). In systemswithout
floating-point hardware,unimplementedinstructionsare caughtand floating-point instructionsare inter-
preted.

VIII. PERSPECTIVE

Perhapsparadoxically,the successof the Unix systemis largely due to the fact that it was not
designedto meetanypredefinedobjectives.Thefirst versionwaswritten whenoneof us(Thompson),dis-
satisfiedwith theavailablecomputerfacilities, discovereda little-usedPDP-7andsetout to createa more
hospitableenvironment.This (essentiallypersonal)effort wassufficiently successfulto gaintheinterestof
theotherauthorandseveralcolleagues,andlaterto justify theacquisitionof thePDP-11/20,specificallyto
supporta text editingandformattingsystem.Whenin turn the11/20wasoutgrown,thesystemhadproved
usefulenoughto persuademanagementto invest in the PDP-11/45,andlater in the PDP-11/70andInter-
data8/32 machines,uponwhich it developedto its presentform. Our goalsthroughoutthe effort, when
articulatedat all, havealwaysbeento build a comfortablerelationshipwith the machineand to explore
ideasandinventionsin operatingsystemsandothersoftware.We havenot beenfacedwith theneedto sat-
isfy someone else’s requirements, and for this freedom we are grateful.

- 13 -

Three considerations that influenced the design of Unix are visible in retrospect.

First: becausewe areprogrammers,we naturallydesignedthe systemto makeit easyto write, test,
andrun programs.Themostimportantexpressionof our desirefor programmingconveniencewasthat the
systemwas arrangedfor interactiveuse,eventhoughthe original versiononly supportedone user. We
believethat a properlydesignedinteractivesystemis muchmoreproductiveandsatisfyingto usethana
‘‘batch’’ system. Moreover,sucha systemis rathereasilyadaptableto noninteractiveuse,while the con-
verse is not true.

Second:therehavealwaysbeenfairly severesizeconstraintson the systemandits software. Given
the partially antagonisticdesiresfor reasonableefficiency and expressivepower, the size constrainthas
encouragednot only economy,but alsoa certaineleganceof design. This may be a thinly disguisedver-
sion of the ‘‘salvation through suffering’’ philosophy, but in our case it worked.

Third: nearly fromthestart,thesystemwasableto, anddid, maintainitself. This fact is moreimpor-
tant thanit might seem. If designersof a systemareforcedto usethatsystem,theyquickly becomeaware
of its functionalandsuperficialdeficienciesandarestronglymotivatedto correctthembeforeit is too late.
Becauseall sourceprogramswerealwaysavailableandeasilymodified on-line,we werewilling to revise
and rewrite the system and its software when new ideas were invented, discovered, or suggested by others.

Theaspectsof Unix discussedin this paperexhibit clearlyat leastthe first two of thesedesigncon-
siderations.The interfaceto the file system,for example,is extremelyconvenientfrom a programming
standpoint. The lowest possibleinterfacelevel is designedto eliminatedistinctionsbetweenthe various
devicesand files and betweendirect and sequentialaccess. No large ‘‘access method’’ routines are
requiredto insulatetheprogrammerfrom thesystemcalls; in fact, all userprogramseithercall the system
directly or usea small library program,lessthana pagelong, thatbuffersa numberof charactersandreads
or writes them all at once.

Anotherimportantaspectof programmingconvenienceis that thereareno ‘‘control blocks’’ with a
complicatedstructurepartially maintainedby and dependedon by the file systemor other systemcalls.
Generally speaking, the contents ofa program’saddressspacearethepropertyof theprogram,andwe have
tried to avoid placing restrictions on the data structures within that address space.

Giventherequirementthatall programsshouldbeusablewith anyfile or deviceasinput or output,it
is alsodesirableto pushdevice-dependentconsiderationsinto theoperatingsystemitself. Theonly alterna-
tives seemto be to load, with all programs,routinesfor dealingwith eachdevice,which is expensivein
space,or to dependon somemeansof dynamicallylinking to theroutineappropriateto eachdevicewhenit
is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-controlschemeandthe commandinterfacehaveprovedboth convenientand
efficient. Becausethe shell operatesas an ordinary, swappableuserprogram,it consumesno ‘‘wired-
down’’ spacein the systemproper,andit may bemadeaspowerfulasdesiredat little cost. In particular,
given the frameworkin which theshell executesasa processthatspawnsotherprocessesto performcom-
mands,the notionsof I/O redirection,backgroundprocesses,commandfiles, and user-selectablesystem
interfaces all become essentially trivial to implement.

Influences

Thesuccessof Unix lies not so muchin new inventionsbut ratherin the full exploitationof a care-
fully selectedsetof fertile ideas,andespeciallyin showingthattheycanbekeysto theimplementationof a
small yet powerful operating system.

Thefork operation,essentiallyaswe implementedit, waspresentin theGENIE time-sharingsystem
[10]. On a numberof pointswe wereinfluencedby Multics, which suggestedtheparticularform of theI/O
systemcalls[11], andboththenameof theshellandits generalfunctions. Thenotionthat theshellshould
createa processfor eachcommandwasalsosuggestedto usby theearlydesignof Multics, althoughin that
system it was later dropped for efficiency reasons.A similar scheme is used by TENEX [12].

- 14 -

IX. STATISTICS

Thefollowing numbersarepresentedto suggestthescaleof the ResearchUnix operation.Thoseof
our usersnot involvedin documentpreparationtendto usethesystemfor programdevelopment,especially
language work.There are few important ‘‘applications’’ programs.

Overall, we have today:

125 user population
33 maximum simultaneous users

1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

Thereis a ‘‘background’’ processthat runsat the lowestpossiblepriority; it is usedto soakup any idle
CPU time. It hasbeenusedto producea million-digit approximationto the constante, andothersemi-
infinite problems.Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours
62 different users

240 log-ins

X. ACKNOWLEDGMENTS

The contributorsto Unix are,in the traditionalbut hereespeciallyappositephrase,too numerousto
mention. Certainly,collectivesalutesaredueto our colleaguesin theComputingScienceResearchCenter.
R. H. Canadaycontributedmuchto thebasicdesignof the file system.We areparticularlyappreciativeof
the inventiveness,thoughtful criticism, and constantsupport of R. Morris, M. D. McIlroy, and J. F.
Ossanna.

References

1. L. P. Deutschand B. W. Lampson,‘An online editor,’ J. Comm. Assoc. Comp. Mach. 10 12,
December 1967 pp. 793-799, 803

2. B. W. Kernighanand L. L. Cherry, ‘A Systemfor TypesettingMathematics,’J. Comm. Assoc.
Comp. Mach.18, pp. 151-157, March 1975.

3. B. W. Kernighan,M. E. Lesk andJ. F. Ossanna,‘DocumentPreparation,’Bell Sys.Tech.J. 57 6
part 2, pp. 2115-2135, July-August 1978.

4. T. A. Dolotta andJ. R. Mashey,‘An Introductionto the Programmer’sWorkbench,’Proc.2nd Int.
Conf. on Software Engineering, October 13-15, 1976, pp. 164-168.

5. T. A. Dolotta,R. C. Haight,andJ. R. Mashey,‘The Programmer’sWorkbench,’Bell Sys.Tech.J.
57 6, pp. 2177-2200, July-August, 1978.

6. H. Lycklama, ‘UNIX on a Microprocessor,’Bell Sys.Tech.J., 57 6, pp. 2087-2101. July-August
1978.

7. B. W. Kernighanand D. M. Ritchie, The C Programming Language, Prentice-Hall,Englewood
Cliffs, New Jersey, 1978.Second edition, 1988.

8. Aleph-null, ‘ComputerRecreations,’SoftwarePracticeand Experience,1 2, April-June 1971, pp.
201-204.

9. S. R. Bourne, ‘The UNIX Shell,’ Bell Sys. Tech. J.57 6, pp. 1971-1990, July-August 1978.

10. L. P. Deutschand B. W. Lampson,‘SDS 930 time-sharingsystempreliminary referencemanual,’
Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

- 15 -

11. R. J. Feiertagand E. I. Organick, ‘The Multics input-outputsystem,’Proc. Third Symposiumon
Operating Systems Principles, October 18-20, 1971, pp. 35-41.

12. D. G. Bobrow,J.D. Burchfiel,D. L. Murphy,andR. S. Tomlinson,‘TENEX, a PagedTime Sharing
System for the PDP-10,’ Comm. Assoc. Comp. Mach.,15 3, March 1972, pp. 135-143.

