The UNIX Time-Sharing System*

D. M. Ritchie and K. Thompson

ABSTRACT

Unix is a general-purposenulti-user, interactiveoperatingsystemfor the larger
Digital EquipmentCorporationPDP-11and the Interdata8/32 computers. It offers a
number of features seldom found even in larger operating systems, including

[A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process /O,

iii The ability to initiate asynchronous processes,

iv System command language selectable on a per-user basis,

v Over 100 subsystems including a dozen languages,

Vi High degree of portability.

This paperdiscusseshe natureandimplementationof the file systemand of the usercommand
interface.

[. INTRODUCTION

There have been four versions of the Unix time-sharing system.

12 The earliest(circa 1969-70)ran on the Digital EquipmentCorporationPDP-7and-9 computers.The
secondversionranon the unprotected®DP-11/20computer. Thethird incorporated multiprogramming and
ranon the PDP-11/34/40, /45, /60, and/70 computersit is the onedescribedn the previouslypublished
versionof this paper,andis alsothe mostwidely usedtoday. This paperdescribe®nly the fourth, current
systemthat runs on the PDP-11/70and the Interdata8/32 computers. In fact, the differencesamongthe
varioussystemss rathersmall; mostof the revisionsmadeto the originally publishedversionof this paper,
aside from those concerned with style, had to do with details of the implementation of the file system.

SincePDP-11Unix becameoperationain February,1971,over 600 installationshavebeenput into
service. Most of themareengagedn applicationssuchascomputerscienceeducationthe preparatiorand
formattingof documentandothertextualmaterial,the collectionandprocessingf troubledatafrom vari-
ousswitchingmachineswithin the Bell System andrecordingandcheckingtelephoneserviceorders. Our
own installationis usedmainly for researchn operatingsystems|anguagescomputemetworks,andother
topics in computer science, and also for document preparation.

Perhapghe mostimportantachievemenbf Unix is to demonstratehat a powerful operatingsystem
for interactiveuse neednot be expensiveeitherin equipmentor in humaneffort: it canrun on hardware
costingaslittle as $40,000,and lessthantwo man-yearsvere spenton the main systemsoftware. We
hope, however,that usersfind that the mostimportant characteristicof the systemare its simplicity,

* Copyright1974,Associationfor ComputingMachinery,Inc., reprintedby permission. This electronicedition of this pa-

peris areprintof the versionappearingn The Bell SystemTechnicallournal57 no. 6, part2 (July-Augustl978). In turn,

thatwasa revisedversionof anarticlethatappearedn Communication®f the ACM, 17, No. 7 (July 1974),pp. 365-375.

That article was a revisedversionof a paperpresentedit the FourthACM Symposiumon OperatingSystemsPrinciples,

IBM ThomasJ. WatsonResearctCenter,Yorktown Heights,New York, October15-17,1973. Most of the differences
betweerversionsoccur between the C. ACM version and the BSTJ printing; we incorporated updated numbers and material
on portability.

elegance, and ease of use.
Besides the operating system proper, some major programs available under Unix are

C compiler

Text editor based on QEDI[1];

Assembler, linking loader, symbolic debugger

Phototypesetting and equation setting programs|2, 3]

Dozens of languages including Fortran 77, Basic, Snobol, APL, Algol 68, M6, TMG, Pascal

Thereis a hostof maintenanceutility, recreatiorandnovelty programsall written locally. The Unix user
community, which numbersin the thousandshas contributedmany more programsand languages.lt is
worth noting that the system is totafiglf-supporting.All Unix softwareis maintainedbn the systemjlike-
wise, this paperandall otherdocumentsn this issueweregeneratecndformattedby the Unix editorand
text formatting programs.

[I.HARDWARE AND SOFTWARE ENVIRONMENT

The PDP-11/700on which the ResearchJnix systemis installedis a 16-bit word (8-bit byte) com-
puter with 768K bytes of core memory; the systemkernel occupies90K bytes about equally divided
betweencodeanddatatables. This system however,includesa very large numberof devicedriversand
enjoysa generousallotmentof spacefor I/O buffersand systemtables;a minimal systemcapableof run-
ning the softwarementionedabovecanrequireaslittle as 96K bytesof core altogether. Thereare even
largerinstallations;seethe descriptionof the PWB/UNIX systemd4, 5], for example.There are also much
smaller, though somewhat restricted, versions of the system [6].

Our own PDP-11hastwo 200-Mb moving-headdisksfor file systemstorageand swapping. There
are 20 variable-speed¢ommunicationdnterfacesattachedto 300- and 1200-bauddatasets,and an addi-
tional 12 communicatiorlines hard-wiredto 9600-bauderminalsand satellitecomputers.Thereare also
several2400- and 4800-baudsynchronouscommunicationinterfacesused for machine-to-machindile
transfer. Finally, thereis a variety of miscellaneouslevicesincluding nine-trackmagnetictape, a line
printer, a voice synthesizer, a phototypesetter, a digital switching network, and a chess machine.

The preponderance of Unix software is written in the abovementioned C languagerfyjersions
of the operatingsystemwerewritten in assembljfanguagebut duringthe summer of 1973, it was rewritten
in C. The size of the new system was about one-third greater than that of tisenolelthe new systenot
only becamemuch easierto understandand to modify but alsoincludedmany functionalimprovements,
including multiprogrammingandthe ability to sharereentranicodeamongseveraluserprogramswe con-
sider this increase in size quite acceptable.

1. THE FILE SYSTEM

The mostimportantrole of the systemis to provideafile system.Fromthe point of view of theuser,
there are three kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file containswhateverinformationthe userplaceson it, for example symbolicor binary (object)
programs.No particularstructuringis expectedy the system. A file of text consistssimply of a string of
characterswith lines demarcatedy the newline character.Binary programsare sequencesf words as
theywill appeailin corememorywhenthe programstartsexecuting. A few userprogramananipulatefiles
with morestructure for example the assemblegeneratesandthe loaderexpectsan objectfile in a partic-
ular format. However, the structure of files is controlled by the programs that use them, not by the system.

3.2 Directories

Directoriesprovidethe mappingbetweerthe nameof files andthefiles themselvesandthusinduce
astructureonthefile systemasawhole. Eachuserhasa directory of his own files; he may also create sub-
directoriesto containgroupsof files convenientlytreatedtogether. A directory behavesexactly like an
ordinaryfile exceptthatit cannotbe written on by unprivilegedprograms so that the systemcontrolsthe

contentsof directories. However,anyonewith appropriatepermissionmay reada directoryjust like any
other file.

The systemmaintainsseveraldirectoriesfor its own use. Oneof theseis theroot directory. All files
in the systemcanbe found by tracinga paththrougha chainof directoriesuntil the desiredfile is reached.
The startingpoint for suchsearchess often the root. Other systemdirectoriescontainall the programs
providedfor generaluse;thatis, all the commands. As will be seenhowever,it is by no meansecessary
that a program reside in one of these directories for it to be executed.

Filesarenamedby sequencesf 14 or fewer characters.Whenthe nameof afile is specifiedto the
systemjt maybein the form of a path name, whichis a sequencef directorynamesseparatedby slashes,
“/ ", andendingin afile name. If the sequenc®eginswith a slashthe searchbeginsin theroot directory.
The name/alpha/beta/gamma causeghe systemto searchthe root for directory alpha, thento search
alpha for beta, finally to find gamma in beta. gamma may be an ordinaryfile, a directory,or a special
file. As a limiting case, the name™tefers to the root itself.

A pathnamenot startingwith “/ ” causeghe systemto beginthe searchin the user’'scurrentdirec-
tory. Thus,the namealpha/beta specifiesthe file namedbeta in subdirectoryalpha of the currentdirec-
tory. Thesimplestkind of name for examplealpha, refersto afile thatitself is foundin the currentdirec-
tory. As another limiting case, the null file name refers to the current directory.

The samenon-directoryfile may appealin severaldirectoriesunderpossiblydifferent names. This
featureis calledlinking; a directory entry for a file is sometimescalleda link. The Unix systemdiffers
from othersystemsdn which linking is permittedin thatall links to a file haveequalstatus. Thatis, afile
doesnot exist within a particulardirectory;the directoryentry for afile consistsmerelyof its nameanda
pointerto the information actually describingthe file. Thusa file existsindependentlyof any directory
entry, although in practice a file is made to disappear along with the last link to it.

Eachdirectoryalwayshasat leasttwo entries. The name* .” in eachdirectoryrefersto the direc-
tory itself. Thusa programmay readthe currentdirectoryunderthe name* .” without knowingits com-
plete pathname. The name* ..” by conventionrefersto the parentof the directoryin which it appears,
that is, to the directory in which it was created.

Thedirectorystructureis constrainedo havethe form of arootedtree. Exceptfor the specialentries
and" ..”, eachdirectorymustappearasan entryin exactlyoneotherdirectory,which s its parent.
The reasonfor this is to simplify the writing of programsthat visit subtreef the directory structure,and
more important,to avoid the separatiorof portionsof the hierarchy. If arbitrarylinks to directorieswere
permitted, it would be quite difficult to detect when the last connection from the radirextorywassev-
ered.

3.3 Special files

Specialfiles constitutethe mostunusualfeatureof the Unix file system. Eachsupported/O device
is associatedvith atleastonesuchfile. Specialfiles arereadandwritten just like ordinarydisk files, but
requestdo reador write resultin activationof the associatedevice. An entryfor eachspecialfile resides
in directory/dev, althougha link maybe madeto oneof thesefiles just asit mayto anordinaryfile. Thus,
for example,to write on a magnetictape one may write on the file /dev/mt. Specialfiles exist for each
communicatiorine, eachdisk, eachtapedrive, andfor physicalmainmemory. Of coursethe activedisks
and the memory special file are protected from indiscriminate access.

Thereis a threefoldadvantagen treatingl/O devicesthis way: file anddevicel/O areassimilar as
possiblefile anddevicenameshavethe samesyntaxandmeaning sothata programexpectingafile name
asa parametecanbe passed devicename;finally, specialffiles aresubjectto the sameprotectionmecha-
nism as regular files.

3.4 Removablefile systems

Althoughthe root of thefile systemis alwaysstoredon the samedevice,it is not necessaryhatthe
entirefile systemhierarchyresideon this device. There is anount system request with two arguments: the
nameof an existingordinaryfile, andthe nameof a specialfile whoseassociatedtoragevolume(e.g.,a
disk pack)shouldhavethe structureof anindependentile systemcontainingits own directoryhierarchy.

The effectof mount is to causereferenceso the heretoforeordinaryfile to referinsteadto the root direc-
tory of thefile systemon theremovablevolume. In effect,mount replaces leaf of the hierarchytree(the
ordinaryfile) by a whole new subtree(the hierarchystoredon the removablevolume). After the mount,
thereis virtually no distinctionbetweerfiles on the removablevolumeandthosein the permanenfile sys-
tem. In our installation,for example,the root directory resideson a small partition of one of our disk
drives, while the other drive, which containsthe user’sfiles, is mountedby the systeminitialization
sequenceA mountablefile systemis generatedby writing on its correspondingpecialfile. A utility pro-
gram is available to create an empty file system, or one may simply copy an existing file system.

Thereis only one exceptionto the rule of identical treatmentof files on different devices:no link
may exist betweenonefile systemhierarchyand another. This restrictionis enforcedso asto avoid the
elaboratebookkeepingthat would otherwisebe requiredto assureremoval of the links wheneverthe
removable volume is dismounted.

3.5 Protection

Although the accessontrol schemds quite simple,it hassomeunusualfeatures. Eachuserof the
systemis assigned uniqueuseridentificationnumber. Whena file is createdjt is markedwith the user
ID of its owner. Also given for new files is aetof tenprotectionbits. Nine of thesespecifyindependently
read,write, and executepermissionfor the owner of the file, for othermembersof his group,andfor all
remaining users.

If thetenthbit is on, the systemwill temporarilychangethe useridentification(hereafteruseriD) of
the currentuserto that of the creatorof the file whenevethefile is executedasa program. This changen
userlID is effectiveonly during the executionof the programthat callsfor it. The set-user-IDfeaturepro-
videsfor privileged programsthat may usefiles inaccessibléo otherusers. For example,a programmay
keepan accountingfile that shouldneitherbe readnor changedexceptby the programitself. If the set-
user-1D bit is on for the program,it may accesghe file althoughthis accesamight be forbiddento other
programsnvokedby the given program’suser. Sincethe actualuserID of the invoker of any programis
always available,set-user-IDprogramsmay take any measuresiesiredto satisfy themselvesasto their
invoker’s credentials. This mechanisnis usedto allow usersto executethe carefully written commands
that call privileged systementries. For example,thereis a systementry invokable only by the “super-
user” (below)that createsanemptydirectory. As indicatedabove directoriesareexpectedo haveentries
for*.” and" ..”. The commandwhich createsa directoryis ownedby the super-useandhasthe set-
user-1Dbit set. After it checksits invoker'sauthorizatiorto createthe specifieddirectory, it createst and
makes the entries for.” and ** ..".

Becauseanyonemay set the set-user-1Dbit on one of his own files, this mechanismis generally
availablewithout administrativeintervention. For example this protectionschemeeasily solvesthe MOO
accounting problem posed by “Aleph-null.” [8]

The systemrecognizeone particularuserID (that of the “super-user”) as exemptfrom the usual
constrainton file accessthus (for example) programsmay be written to dumpandreloadthe file system
without unwanted interference from the protection system.

3.61/0 calls

The systemcallsto do I/O aredesignedo eliminatethe differencesbetweerthe variousdevicesand
stylesof access.Thereis no distinction between “random™ and “sequential” I/O, nor is any logical record
size imposed by the systeriihe sizeof anordinaryfile is determinedy the numberof byteswritten oniit;
no predetermination of the size of a file is necessary or possible.

To illustrate the essentialof 1/0, someof the basiccalls are summarizedbelow in an anonymous
languagehatwill indicatethe requiredparametersvithout gettinginto the underlyingcomplexities. Each
call to the systemmay potentially resultin an error return,which for simplicity is not representedh the
calling sequence.

To read or write a file assumed to exist already, it must be opened by the following call:

filep = open(name, flag)

wherename indicatesthe nameof thefile. An arbitrarypathnamemaybe given. The flag argumenindi-
cates whether the file is to be read, written, or “updated,” that is, read and written simultaneously.

The returnedvaluefilep is calleda file descriptor. It is a small integerusedto identify the file in
subsequent calls to read, write, or otherwise manipulate the file.

To createa newfile or completelyrewrite an old one,thereis a create systemcall that createshe
givenfile if it doesnot exist, or truncatest to zerolengthif it doesexist; cr eate alsoopensthe newfile for
writing and, likeopen, returns a file descriptor.

Thefile systemmaintainsno locks visible to the user,nor is thereany restrictionon the numberof
userswho may havea file openfor readingor writing. Althoughit is possiblefor the contentsof afile to
becomescrambledvhentwo userswrite onit simultaneouslyin practicedifficulties do not arise. We take
theview thatlocks areneithernecessaryor sufficient,in our environmentfo preventinterferencebetween
usersof the samefile. They are unnecessarpecausave are not facedwith large, single-file databases
maintainedby independenprocessesThey areinsufficient becausdocks in the ordinary sensewhereby
oneuseris preventedrom writing on afile thatanothermseris reading cannotpreventconfusionwhen,for
example, both users are editing a file with an editor that makes a copy of the file being edited.

Thereare,however,sufficientinternalinterlocksto maintainthe logical consistencyof the file sys-
tem whentwo usersengagesimultaneouslyin activities suchaswriting on the samefile, creatingfiles in
the same directory, or deleting each other’s open files.

Exceptasindicatedbelow, readingandwriting aresequential. This meanghatif a particularbytein
thefile wasthe last byte written (or read),the next /O call implicitly refersto the immediatelyfollowing
byte. For eachopenfile thereis a pointer, maintainednsidethe system that indicatesthe nextbyteto be
read or written.If n bytes are read or written, the pointer advancestiyes.

Once a file is open, the following calls may be used:

n = read(filep, buffer, count)
n = write(filep, buffer, count)

Up to count bytesaretransmittedbetweerthefile specifiedby filep andthe byte arrayspecifiedby buffer.
Thereturnedvaluen is the numberof bytesactuallytransmitted. In thewrite casen is the sameascount
exceptunderexceptionalconditions,suchas /O errorsor end of physicalmediumon specialfiles; in a
read, however,n maywithout errorbelessthancount. If thereadpointeris soneartheendof thefile that
readingcount charactersvould causeeadingbeyondthe end,only sufficientbytesaretransmittedo reach
the endof thefile; also,typewriter-liketerminalsneverreturnmorethanoneline of input. Whenaread

call returnswith n equalto zero,the endof the file hasbeenreached.For disk files this occurswhenthe
readpointerbecomegqualto the currentsizeof the file. It is possible to generate an end-of-file from a ter-
minal by use of an escape sequence that depends on the device used.

Bytes written affect only thosepartsof a file implied by the position of the write pointerand the
count;no otherpartof thefile is changed.If thelastbyte lies beyondthe endof thefile, thefile is madeto
grow as needed.

To do random(direct-accesdlyO it is only necessaryo movethe reador write pointerto the appro-
priate location in the file.

location = Iseek(filep, offset, base)

The pointer associated withep is moved to a positiooffset bytesfrom the beginningof thefile, from the
currentpositionof the pointer,or from the end of thefile, dependingon base. offset maybe negative. For
somedevices(e.g.,papertapeandterminals)seekcalls areignored. The actualoffsetfrom the beginning
of the file to which the pointer was moved is returneldation.

Thereare severaladditionalsystementrieshavingto do with I/O andwith the file systemthat will
not bediscussed.For examplecloseafile, getthestatusof a file, change the protection mode or the owner
of a file, create a directory, make a link to an existing file, delete a file.

IV.IMPLEMENTATION OF THE FILE SYSTEM

As mentionedn Section3.2 above a directoryentry containsonly a namefor the associatedile and
a pointerto the file itself. This pointeris an integercalled the i-number (for index number)of the file.
Whenthefile is accessedts i-numberis usedasanindexinto a systemtable (thei-list) storedin a known
part of the deviceon which the directoryresides. The entry found thereby(the file’s i-node containsthe
description of the file:

[the user and group-ID of its owner

ii its protection bits

iii the physical disk or tape addresses for the file contents

iv its size

\Y time of creation, last use, and last modification

vi the number of links to the file, that is, the number of times it appears in a directory
vii a code indicating whether the file is a directory, an ordinary file, or a special file.

The purpose of aopen or create system call is to turn theathnamegivenby the userinto ani-numberby
searchingthe explicitly or implicitty nameddirectories. Oncea file is open,its device,i-number,and
read/writepointerarestoredin a systemtableindexedby thefile descriptoreturnedby the open or create.
Thus,during a subsequentall to reador write thefile, the descriptormay be easilyrelatedto the informa-
tion necessary to access the file.

Whenanewfile is createdani-nodeis allocatedfor it anda directoryentryis madethatcontainsthe
nameof thefile andthei-nodenumber. Making alink to anexisting file involves creating a directory entry
with thenewname copyingthei-numberfrom the original file entry,andincrementinghe link-countfield
of thei-node. Removing(deleting)afile is doneby decrementinghe link-countof the i-nodespecifiedby
its directoryentry and erasingthe directoryentry. If the link-countdropsto 0, any disk blocksin the file
are freed and the i-node is de-allocated.

The spaceon all disksthatcontainafile systemis dividedinto a numberof 512-byteblockslogically
addressedrom 0 up to a limit thatdependson the device. Thereis spacein thei-nodeof eachfile for 13
deviceaddressesFor nonspeciafiles, the first 10 deviceaddressepoint at the first 10 blocks of thefile.
If thefile is largerthan 10 blocks,the 11 deviceaddresgpointsto an indirect block containingup to 128
addressesf additionalblocksin thefile. Still largerfiles usethe twelfth deviceaddresof the i-nodeto
point to a double-indirectblock naming 128 indirect blocks, eachpointing to 128 blocks of the file. If
required, the thirteenthdevice addressis a triple-indirect block. Thus files may conceptuallygrow to
[(10+128+12872+128"3)*51 Hytes. Onceopenedpytesnumberedbelow 5120canbe readwith a single
disk accessbytesin therange5120to 70,656requiretwo accessedyytesin therange70,656to 8,459,264
requirethreeaccessedyytesfrom thereto the largestfile (1,082,201,088}equirefour accessesln prac-
tice, a device cache mechanism (see below) proves effective in eliminating most of the indirect fetches.

The foregoingdiscussiorappliesto ordinaryfiles. Whenan /O requestis madeto a file whosei-
nodeindicatesthatit is specialthe last 12 deviceaddressvordsareimmaterial,andthe first specifiesan
internaldevicename whichis interpretedasa pair of numbergepresentingrespectivelya devicetypeand
subdevicenumber. The devicetype indicateswhich systemroutinewill dealwith I/O on thatdevice;the
subdevice number selects, for example, a diisle attachedo a particularcontrolleror oneof severakim-
ilar terminal interfaces.

In this environmentthe implementatiorof the mount systemcall (Section3.4) is quite straightfor-
ward. mount maintainsa systemtable whosearguments the i-numberand devicenameof the ordinary
file specifiedduringthe mount, andwhosecorrespondingalueis the devicenameof theindicatedspecial
file. Thistableis searchedor eachi-number/deviceair thatturnsup while a pathnameis beingscanned
during anopen or create; if a match is found, the i-numbisrreplacedby thei-numberof theroot directory
and the device name is replaced by the table value.

To the user,both readingand writing of files appearto be synchronousand unbuffered. That is,
immediately after return from a read call the data are available; conversely,after a write the user’s
workspacemay be reused. In fact, the systemmaintainsa rathercomplicatedbuffering mechanismnthat

reducegreatlythe numberof I/O operationgequiredto accesa file. Suppose write call is madespeci-
fying transmissiorof a single byte. The systemwill searchits buffersto seewhetherthe affecteddisk
block currentlyresidesn mainmemory;if not, it will bereadin from the device. Thenthe affectedbyteis
replacedn the bufferandanentryis madein alist of blocksto bewritten. The returnfrom thewrite call
may thentake place,althoughthe actuall/O may not be completeduntil a latertime. Converselyjf asin-
gle byteis read,the systemdeterminesvhetherthe secondarystorageblock in which the byte is locatedis
alreadyin oneof the system’sbuffers;if so,the byte canbereturnedmmediately. If not, the blockis read
into a buffer and the byte picked out.

The systemrecognizesvhena programhasmadeaccesse$o sequentiablocks of a file, andasyn-
chronouslypre-readghe next block. This significantly reduceshe runningtime of mostprogramswhile
adding little to system overhead.

A programthatreadsor writesfiles in units of 512 byteshasanadvantagevera programthatreads
or writesa singlebyteat atime, butthe gainis notimmensejt comesmainly from the avoidance of system
overhead.If a programis usedrarely or doesno greatvolume of 1/O, it may quite reasonablyreadand
write in units as small as it wishes.

The notion of thei-list is an unusualfeatureof Unix. In practicethis methodof organizingthe file
systemhasprovedquite reliableandeasyto dealwith. To the systemitself, oneof its strengthds the fact
that eachfile hasa short, unambiguousiamerelatedin a simple way to the protection,addressingand
otherinformationneededo accesghefile. It alsopermitsa quite simpleandrapidalgorithmfor checking
the consistencyf afile systemfor example yerificationthatthe portionsof eachdevicecontaininguseful
informationandthosefree to be allocatedare disjoint andtogetherexhausthe spaceon the device. This
algorithmis independenbf the directoryhierarchy becausét needonly scanthe linearly organized-list.

At the sametime the notion of the i-list induces certain peculiarities not found in other file system organiza-
tions. For example thereis the questionof who is to be chargedfor the spacea file occupiespecausall
directoryentriesfor afile haveequalstatus. Chargingthe ownerof afile is unfairin generalfor oneuser

may createa file, anothermay link to it, andthe first usermay deletethe file. The first useris still the
ownerof thefile, butit shouldbe chargedo the seconduser. The simplest reasonably fair algorithm seems

to be tospreadhe chargesquallyamonguserswho havelinks to afile. Many installationsavoidtheissue

by not charging any fees at all.

V. PROCESSESAND IMAGES

An image is acomputerexecutionenvironment.It includesa memoryimage,generakegistervalues,
status of open files, current directory and the like.image is the current state of a pseudo-computer.

A process is the executionof animage. While the processois executingon behalfof a processthe
image mustresidein main memory;during the executionof other processe# remainsin main memory
unless the appearance of an active, higher-priority process forces it to be swapped out to the disk.

The user-memoryartof animageis divided into threelogical segments.The programtext segment
beginsat location 0 in the virtual addressspace. During execution this segmenis write-protectedand a
singlecopy of it is sharedamongall processegxecutingthe sameprogram. At thefirst hardwareprotec-
tion byte boundaryabovethe programtext segmenin the virtual addresspacebeginsa non-sharedyvrit-
abledatasegmentthe size of which may be extendedby a systemcall. Startingat the highestaddressn
thevirtual addresspacds a stacksegmentwhich automatically grows downward as the stack pointer fluc-
tuates.

5.1 Processes
Exceptwhile the systemis bootstrappingtself into operationa new processancomeinto existence
only by use of théork system call:
processid = fork()

Whenfork is executedthe processsplits into two independentlyexecutingprocessesThe two processes
haveindependentopiesof the original memoryimage,andshareall openfiles. The new processesliffer
only in that one is considered the pangmtcessin the parentthereturnedorocessid actuallyidentifiesthe

child process and is never 0, while in the child, the returned value is always 0.

Becausehe valuesreturnedby fork in the parentandchild processaredistinguishablegachprocess
may determine whether it is the parent or child.

5.2 Pipes
Processemay communicatewith relatedprocessesisingthe samesystemread andwrite callsthat
are used for file-system I/Olhe call:
filep = pipe()

returnsa file descriptorfilep and createsan inter-processhannelcalleda pipe. This channellike other
openfiles, is passedrom parentto child processn the imageby the fork call. A read usinga pipe file
descriptomwaits until anotherprocesswrites usingthefile descriptorfor the samepipe. At this point, data
arepassedetweernthe imagesof the two processesNeitherprocesseedknow thata pipe, ratherthanan
ordinary file, is involved.

Althoughinter-proces£ommunicatiorvia pipesis a quite valuabletool (seeSection6.2),it is nota
completelygeneralmechanismpecausehe pipe mustbe setup by a commonancestorof the processes
involved.

5.3 Execution of programs
Another major system primitive is invoked by

execute(file, arg arg,, ... , arg])

which requestghe systemto readin and executethe programnamedby file, passingit string arguments
argq, argp, ..., argy,. All the codeanddatain the processnvoking execute is replacedrom thefile, but
openfiles, currentdirectory,andinter-processelationshipsareunaltered.Only if the call fails, for exam-
ple becausdile could not be found or becausets execute-permissiohit was not set,doesa returntake
place from thexecute primitive; it resembles a “jump” machine instruction rather than a subroutine call.

5.4 Process synchronization
Another process control system call:

processid = wait(status)

causests callerto suspencexecutionuntil oneof its childrenhascompletedexecution. Thenwait returns
the processid of the terminatedorocess.An errorreturnis takenif the calling processhasno descendants.
Certain status from the child process is also available.

5.5 Termination
Lastly:

exit(status)

terminatesa processdestroysits image, closesits openfiles, and generallyobliteratesit. The parentis
notified throughthe wait primitive, and status is madeavailableto it. Processemay alsoterminateasa
result of various illegal actions or user-generated signals (Section VII below).

VI. THE SHELL

For mostusers,communicationwith the systemis carriedon with the aid of a programcalledthe
shell. The shell is a command-lineinterpreter:it readslines typed by the userand interpretsthem as
requestdo executeotherprograms.(The shellis describedully elsewherd9], sothis sectionwill discuss
only the theory of its operation.) In simplestform, a commandline consistsof the commandnamefol-
lowed by arguments to the command, all separated by spaces:

command arg argz arq]

The shell splits up the commandnameand the argumentsnto separatestrings. Then a file with name
command is sought;command may be a pathnameincludingthe “/” characteto specifyanyfile in the
system. If command is found, it is broughtinto memoryand executed. The argumentsollectedby the
shellareaccessibléo the command. Whenthe commands finished,the shellresumests own execution,
and indicates its readiness to accept another command by typing a prompt character.

If file command cannotbe found,the shellgenerallyprefixesa string suchas/bin/ to command and
attemptsagainto find the file. Directory /bin containscommandsntendedto be generallyused. (The
sequence of directories to be searched may be changed by user request.)

6.1 Standard I/O

The discussiorof I/O in Sectionlll aboveseemsdo imply thateveryfile usedby a programmustbe
openedor createdby the programin orderto geta file descriptorfor the file. Programsexecutedby the
shell, however,startoff with threeopenfiles with file descriptor9), 1, and2. As sucha programbegins
executionfile 1 is openfor writing, andis bestunderstoodasthe standardoutputfile. Exceptundercir-
cumstance#dicatedbelow, this file is the user'sterminal. Thusprogramsthat wish to write informative
information ordinarily usefile descriptorl. Converselyfile O startsoff openfor reading,and programs
that wish to read messages typed by the user read this file.

Theshellis ableto changehe standardassignmentsf thesefile descriptordrom the user’sterminal
printerandkeyboard. If oneof the argumentto a commands prefixedby “>”, file descriptorl will, for
the duration of the command, refer to the file named after the Fgt.example:

Is
ordinarily lists, on the typewriter, the names of the files in the current direcibsycommand:
Is >there

createsafile calledthere andplacesthe listing there. Thusthe argumentthere means‘place outputon
there.”” On the other hand:

ed
ordinarily enters the editor, which takes requests from the user via his keybbardommand
ed <script

interpretsscript as a file of editor commands; thus “<script” means “take input feonipt.”’

Althoughthe file namefollowing “<” or “>" appeargo be anargumento the commandjn factit
is interpretedcompletelyby the shellandis not passedo the commandat all. Thusno specialcodingto
handlel/O redirectionis neededwithin eachcommand;the commandneedmerely use the standardfile
descriptors 0 and 1 where appropriate.

File descriptor?2 is, like file 1, ordinarily associatedwvith the terminal output stream. When an
output-diversiorrequestwith “>" is specified,file 2 remainsattachedo the terminal, so thatcommands
may produce diagnostic messages that do not silently end up in the output file.

6.2 Filters

An extensionof the standard/O notion is usedto direct outputfrom one commandto the input of
another. A sequencef commandseparatedby vertical barscauseghe shellto executeall the commands
simultaneoushandto arrangethatthe standarcutputof eachcommandoe deliveredto the standardnput
of the next command in the sequengéus in the command line:

Is Opr -2 Oopr

Is lists the namesof thefiles in the currentdirectory;its outputis passedo pr, which paginatests input
with datedheadings.(Theargument’ —2” requestslouble-columroutput.) Likewise,the outputfrom pr
is input toopr; this command spools its input onto a file for off-line printing.

This procedure could have been carried out more clumsily by:

-10 -

Is >templ

pr—2 <templ >temp?2

opr <temp2
followed by removalof thetemporaryfiles. In theabsencef the ability to redirectoutputandinput, a still
clumsiermethodwould havebeento requirethe ls commando acceptuserrequestgo paginateits output,
to print in multi-columnformat, andto arrangethatits outputbe deliveredoff-line. Actually it would be
surprising,andin fact unwisefor efficiency reasonsto expectauthorsof commandsuchasls to provide
such a wide variety of output options.

A programsuchas pr which copiesits standardinput to its standardoutput (with processingjs
calledafilter. Somefilters that we havefound useful perform charactetransliteration selectionof lines
according to a pattern, sorting of the input, and encryption and decryption.

6.3 Command separ ator s; multitasking
Anotherfeatureprovidedby the shellis relatively straightforward. Commandsheednot be on differ-
ent lines; instead they may be separated by semicolons:
Is; ed
will first list the contents of the current directory, then enter the editor.

A relatedfeatureis moreinteresting. If a commands followed by “ &,” the shellwill not wait for
the commando finish beforepromptingagain;instead,t is readyimmediatelyto accepta newcommand.
For example:

as source >output &

causessour ce to be assembledwith diagnosticoutputgoing to output; no matterhow long the assembly
takes,the shell returnsimmediately. Whenthe shell doesnot wait for the completionof a command the
identificationnumberof the processunningthat commands printed. This identification may be usedto
wait for the completion of the command or to terminat&fie “& " may be used several times in a line:

as source >output & Is >files &

doesboththe assemblyandthe listing in the background.In theseexamplesan outputfile otherthanthe
terminalwas provided;if this had not beendone,the outputsof the variouscommandsvould havebeen
intermingled.

The shell also allows parentheses in the above operattmngxample:
(date; Is) >x &

writes the currentdateandtime followed by a list of the currentdirectoryonto the file x. The shell also
returns immediately for another request.

6.4 The shell asa command; command files
The shell is itself a command, and may be called recursi@lppose fileryout contains the lines:
as source

mv a.out testprog
testprog

The mv commandcauseghe file a.out to be renamedestprog. a.out is the (binary) outputof the assem-
bler, readyto be executed. Thusif the threelines abovewere typed on the keyboard,sour ce would be
assembledthe resultingprogramrenamedestprog, andtestpr og executed.Whenthe linesarein tryout,

the command:

sh <tryout

would cause the shedh to execute the commands sequentially.
The shell has further capabilities,including the ability to substituteparametersand to construct

-11 -

argumentists from a specifiedsubsebf the file namesn a directory. It alsoprovidesgeneralconditional
and looping constructions.

6.5 Implementation of the shell

The outline of the operationof the shell cannow be understood.Most of the time, the shellis wait-
ing for the userto type a command. Whenthe newline characteendingthe line is typed,the shell'sread
call returns. The shellanalyzeghe commandine, puttingthe argumentsn a form appropriatdfor execute.
Thenfork is called. The child processwhosecodeof courseis still that of the shell, attemptsto perform
an execute with the appropriatearguments.If successfulthis will bring in andstartexecutionof the pro-
gramwhosenamewas given. Meanwhile,the other processresultingfrom the fork, which is the parent
processwaits for the child process to di&/henthis happensthe shellknowsthe commands finished,so
it types its prompt and reads the keyboard to obtain another command.

Giventhis framework,the implementatiorof backgroundporocessess trivial, whenevera command
line contains* &,” theshellmerelyrefrainsfrom waiting for the procesghatit createdo executehe com-
mand.

Happily, all of this mechanisnmeshesery nicely with the notion of standardnput andoutputfiles.
Whena processs createdy thefork primitive, it inheritsnot only the memory image of its parent but also
all the files currently openin its parent,including thosewith file descriptors0, 1, and 2. The shell, of
course usesthesefiles to readcommandines andto write its promptsanddiagnosticsandin the ordinary
caseits children the commandprograms inherit themautomatically. Whenan argumentwith “<” or
“>" is given, however the offspring processjust beforeit performsexecute, makesthe standard/O file
descriptor(0 or 1, respectively)eferto the namedfile. This is easybecauseby agreementthe smallest
unusedile descriptoris assignedvhena newfile is opened (or created); it is only necessaryo closefile 0
(or 1) and openthe namedfile. Becauseahe processn which the commandprogramruns simply termi-
nateswhenit is through,the association between a file specified after “<” or “>" and file descriptor O or 1
is endedautomaticallywhenthe procesdies. Thereforethe shell neednot know the actualnamesof the
files that are its own standard input and output, because it need never reopen them.

Filters are straightforward extensions of standard 1/O redirection with pipes used instead of files.

In ordinarycircumstanceghe mainloop of the shell neverterminates.(The main loop includesthe
branchof the returnfrom fork belongingto the parentprocessghatis, the branchthat doesa wait, then
readsanothercommandine.) Theonething thatcauseshe shellto terminateis discoveringan end-of-file
condition on its input file.Thus, when the shell is executed as a command with a given input file, as in:

sh <comfile

thecommandsn comfile will be executedintil the endof comfile is reachedthentheinstanceof the shell
invoked by sh will terminate. Becausehis shell processs the child of anotherinstanceof the shell, the
wait executed in the latter will return, and another command may then be processed.

6.6 Initialization

The instance®f the shellto which userstype commandsarethemselvehildrenof anotherprocess.
The last stepin the initialization of the systemis the creationof a single processandthe invocation(via
execute) of aprogramcalledinit. Therole of init is to createoneprocesdor eachterminalchannel. The
varioussubinstancesf init openthe appropriateéerminalsfor inputandoutputonfiles 0, 1, and 2, waiting,
if necessaryfor carrierto be establishen dial-uplines. Thena messagés typedout requestinghatthe
userlog in. Whenthe usertypesa nameor otheridentification,the appropriaténstanceof init wakesup,
receiveghelog-in line, andreadsa passwordile. If the user'snameis found,andif heis ableto supply
the correctpasswordjnit changedo the user’'sdefaultcurrentdirectory,setsthe process’auserID to that
of the personlogging in, and performsan execute of the shell. At this point, the shellis readyto receive
commands and the logging-in protocol is complete.

Meanwhile,the mainstreanpath of init (the parentof all the subinstancesf itself that will later
becomeshells)doesawait. If oneof the child processeterminatesgitherbecausa shellfoundanendof
file or becausea usertypedan incorrectnameor passwordthis pathof init simply recreateghe defunct

-12 -

processwhich in turn reopensthe appropriateinput and output files and types anotherlog-in message.
Thus a user may log out simply by typing the end-of-file sequence to the shell.

6.7 Other programs as shell

The shell as describedaboveis designedo allow usersfull accesgo the facilities of the system,
becausat will invoke the executionof any programwith appropriateprotectionmode. Sometimeshow-
ever, a different interface to the system is desirable, and this feature is easily arranged for.

Recallthataftera userhassuccessfullyjoggedin by supplyinga nameandpasswordijnit ordinarily
invokesthe shellto interpret command linesThe user’s entry in the password file may contain the name of
a programto be invokedafterlog-in insteadof the shell. This programis freeto interpretthe user'smes-
sages in any way it wishes.

For example the passwordile entriesfor usersof a secretariakditing systemmight specifythatthe
editored is to be usedinsteadof the shell. Thuswhenusersof the editingsystemlog in, theyareinside the
editorand canbeginwork immediately;also, they canbe preventedrom invoking programsnot intended
for their use. In practice,t hasproveddesirableo allow a temporaryescapdrom the editorto executethe
formatting program and other utilities.

Severalbf thegamegqe.g.,chessplackjack,3D tic-tac-toe)availableon the systemillustratea much
moreseverelyrestrictedenvironment. For eachof theseanentryexistsin the passwordile specifyingthat
the appropriategame-playingorogramis to be invokedinsteadof the shell. Peoplewho log in asa player
of oneof thesegamedfind themselvedimited to the gameandunableto investigatethe (presumablymore
interesting) offerings of the Unix system as a whole.

VIl. TRAPS

The PDP-11hardwaredetectsa numberof programfaults, suchasreference¢o non-existenimem-
ory, unimplementednstructions,and odd addressesisedwherean evenaddresss required. Suchfaults
causethe processotto trap to a systemroutine. Unlessother arrangementfiave beenmade,an illegal
actioncauseshe systemto terminatethe processandto write its imageonfile corein the current directory.
A debugger can be used to determine the state of the program at the time of the fault.

Programsthat are looping, that produce unwantedoutput, or about which the user has second
thoughtsmay be haltedby the useof theinterrupt signal,whichis generatedby typing the “delete” char-
acter. Unlessspecialactionhasbeentaken,this signalsimply causeghe programto ceaseexecutionwith-
out producinga corefile. Thereis alsoa quit signalusedto forceanimagefile to be produced.Thuspro-
grams that loop unexpectedly may be halted and the remains inspected without prearrangement.

The hardware-generatddults andthe interruptandquit signalscan,by requestpe eitherignoredor
caughtby a process.For example the shellignoresquits to preventa quit from logging the userout. The
editor catchednterruptsandreturnsto its commandevel. This is usefulfor stoppinglong printoutswith-
out losing work in progress(the editor manipulatesa copy of thefile it is editing). In systemswithout
floating-point hardware ,unimplementednstructionsare caughtand floating-point instructionsare inter-
preted.

VIIl. PERSPECTIVE

Perhapsparadoxically,the successof the Unix systemis largely due to the fact that it was not
designedo meetany predefinedbjectives. Thefirst versionwaswritten whenoneof us (Thompson)dis-
satisfiedwith the availablecomputerfacilities, discovered little-usedPDP-7andsetout to createa more
hospitableenvironment. This (essentiallypersonaleffort wassufficiently successfuto gainthe interestof
the otherauthorandseveralkolleaguesandlaterto justify the acquisitionof the PDP-11/20specificallyto
supporta text editingandformattingsystem. Whenin turn the 11/20wasoutgrown,the systemhadproved
usefulenoughto persuadenanagemento investin the PDP-11/45andlaterin the PDP-11/70and Inter-
data8/32 machinesuponwhich it developedo its presentform. Our goalsthroughoutthe effort, when
articulatedat all, have alwaysbeento build a comfortablerelationshipwith the machineandto explore
ideasandinventionsin operatingsystemsandothersoftware. We havenot beenfacedwith the needto sat-
isfy someone else’s requirements, and for this freedom we are grateful.

-13 -

Three considerations that influenced the design of Unix are visible in retrospect.

First: becauseve are programmerswe naturally designedhe systemto makeit easyto write, test,
andrun programs. The mostimportantexpressiorof our desirefor programmingconveniencevasthatthe
systemwas arrangedfor interactiveuse,eventhoughthe original versiononly supportedone user. We
believethat a properly designednteractivesystemis much more productiveand satisfyingto usethana
“batch” system. Moreover,sucha systemis rathereasily adaptablego noninteractiveuse,while the con-
verse is not true.

Secondtherehavealwaysbeenfairly severesize constrainton the systemandits software. Given
the partially antagonisticdesiresfor reasonableefficiency and expressivepower, the size constrainthas
encouragechot only economy but alsoa certaineleganceof design. This may be a thinly disguisedver-
sion of the “salvation through suffering” philosophy, but in our case it worked.

Third: nearly fronmthe start,the systemwasableto, anddid, maintainitself. Thisfactis moreimpor-
tantthanit might seem. If designerof a systemareforcedto usethat systemthey quickly becomeaware
of its functionalandsuperficialdeficienciesandarestronglymotivatedto correctthembeforeit is too late.
Becauseall sourceprogramswere alwaysavailableand easilymodified on-line, we werewilling to revise
and rewrite the system and its software when new ideas were invented, discovered, or suggested by others.

The aspectf Unix discussedn this paperexhibit clearly at leastthe first two of thesedesigncon-
siderations. The interfaceto the file system,for example,is extremelyconvenientfrom a programming
standpoint. The lowest possibleinterfacelevel is designedto eliminate distinctionsbetweenthe various
devicesand files and betweendirect and sequentialaccess. No large “access method” routines are
requiredto insulatethe programmeifrom the systemcalls; in fact, all userprogramseithercall the system
directly or usea smalllibrary program lessthana pagelong, thatbuffersa numberof characterandreads
or writes them all at once.

Anotherimportantaspectof programmingconveniencas that thereareno “control blocks” with a
complicatedstructurepartially maintainedby and dependecdn by the file systemor other systemcalls.
Generally speaking, the contentsagfrogram’saddresspacearethe propertyof the program,andwe have
tried to avoid placing restrictions on the data structures within that address space.

Giventherequirementhatall programsshouldbe usablewith anyfile or deviceasinput or output,it
is alsodesirableto pushdevice-dependembnsiderationito the operatingsystemitself. Theonly alterna-
tives seemto be to load, with all programsroutinesfor dealingwith eachdevice,which is expensiven
spacepr to depencon somemeansf dynamicallylinking to the routineappropriatdo eachdevicewhenit
is actually needed, which is expensive either in overhead or in hardware.

Likewise, the process-contraschemeand the commandinterfacehave provedboth convenientand
efficient. Becausethe shell operatesas an ordinary, swappableuser program,it consumeso “wired-
down” spacein the systemproper,andit may be madeaspowerful asdesiredat little cost. In particular,
giventhe frameworkin which the shell executesasa procesghat spawnsotherprocesseto performcom-
mands,the notionsof I/O redirection,backgroundprocessescommandfiles, and user-selectablsystem
interfaces all become essentially trivial to implement.

Influences

The succes®f Unix lies not so muchin newinventionsbut ratherin the full exploitationof a care-
fully selectedsetof fertile ideas,andespeciallyin showingthattheycanbekeysto theimplementatiorof a
small yet powerful operating system.

Thefork operationgssentiallyaswe implementedt, waspresenin the GENIE time-sharingsystem
[10]. Onanumberof pointswe wereinfluencedby Multics, which suggestedhe particularform of thel/O
systemcalls[11], andboththe nameof the shellandits generalfunctions. The notionthatthe shell should
createa procesdor eachcommandwvasalsosuggestedo usby the early designof Multics, althoughin that
system it was later dropped for efficiency reasghsimilar scheme is used by TENEX [12].

-14 -

IX.STATISTICS

The following numbersare presentedo suggesthe scaleof the ResearchJnix operation. Thoseof
our usersnotinvolvedin documenfpreparatiortendto usethe systemfor programdevelopmentespecially
language work.There are few important “applications” programs.

Overall, we have today:

125 user population
33 maximum simultaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage blocks used

Thereis a “background” procesghat runs at the lowest possiblepriority; it is usedto soakup any idle
CPUtime. It hasbeenusedto producea million-digit approximationto the constante, and other semi-
infinite problems.Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours

230 connect hours
62 different users
240 log-ins

X.ACKNOWLEDGMENTS

The contributorsto Unix are,in the traditionalbut hereespeciallyappositephrase oo numerougo
mention. Certainly,collectivesalutesaredueto our colleaguesn the ComputingScienceResearctCenter.
R. H. Canadaycontributedmuchto the basicdesignof the file system. We areparticularlyappreciativeof
the inventivenessthoughtful criticism, and constantsupportof R. Morris, M. D. Mcllroy, and J. F.
Ossanna.

References
1. L. P. Deutschand B. W. Lampson,‘An online editor,” J. Comm. Assoc. Comp. Mach. 10 12,
December 1967 pp. 793-799, 803

2. B. W. Kernighanand L. L. Cherry, ‘A Systemfor TypesettingMathematics,’J. Comm. Assoc.
Comp. Mach.18, pp. 151-157, March 1975.

3. B. W. Kernighan,M. E. LeskandJ. F. OssannaDocumentPreparation,Bell Sys.Tech.J. 57 6
part 2, pp. 2115-2135, July-August 1978.

4. T. A. DolottaandJ. R. Mashey,'An Introductionto the Programmer'sNorkbench,’Proc.2nd Int.
Conf. on Software Engineering, October 13-15, 1976, pp. 164-168.

5. T. A. Dolotta,R. C. Haight,andJ. R. Mashey, The Programmer’aNorkbench,'Bell Sys.Tech.J.
576, pp. 2177-2200, July-August, 1978.

6. H. Lycklama,‘UNIX on a Microprocessor,Bell Sys.Tech.J.,57 6, pp. 2087-2101. July-August
1978.

7. B. W. Kernighanand D. M. Ritchie, The C Programming Language, Prentice-Hall,Englewood
Cliffs, New Jersey, 1978Second edition, 1988.

8. Aleph-null, ‘Computer Recreations,'Software Practiceand Experience,1 2, April-June 1971, pp.
201-204.

9. S.R.Bourne, ‘The UNIX Shell,’ Bell Sys. Tech.97 6, pp. 1971-1990, July-August 1978.

10. L. P.DeutschandB. W. Lampson,'SDS 930 time-sharingsystempreliminary referencemanual,’
Doc. 30.10.10, Project GENIE, Univ. Cal. at Berkeley, April 1965.

-15 -

11. R.J.Feiertagand E. I. Organick, ‘The Multics input-outputsystem,’Proc. Third Symposiumon
Operating Systems Principles, October 18-20, 1971, pp. 35-41.

12. D. G.Bobrow,J.D. Burchfiel,D. L. Murphy,andR. S. Tomlinson, TENEX, a PagedTime Sharing
System for the PDP-10,” Comm. Assoc. Comp. Math3, March 1972, pp. 135-143.

