
CSE 451 Autumn 2015
Final Solutions

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

mean 75.26, median 77, stdev 12.92

I. Warm-up

(a) (10 points) Circle true or false for each statement (no need to justify your answers here).

True False When an x86 Bootstrap Processor (BSP) powers on, the BSP is in protected
mode with paging enabled.

Solution: F

True False When an x86 BSP (in protected mode with paging enabled) wakes up an
Application Processor (AP), the AP starts code execution in protected mode
with paging enabled.

Solution: F

True False Because the I/O Advanced Programmable Interrupt Controller (IOAPIC)
can route interrupts to the BSP but not to the APs, JOS sets up the IOAPIC
to route IRQ_KBD and IRQ_SERIAL to the BSP.

Solution: F

True False In JOS, the kernel will not trigger a page fault when it writes to an arbitrary
memory address, because the kernel uses privilege level 0 (ring 0).

Solution: F

True False Device drivers need to run in privilege level 0 (ring 0) to communicate with
the hardware.

Solution: F

Page 2 of 15

(b) (5 points) Ben Bitdiddle is using GDB to single-step over kern/entry.S in JOS:

...

Load the physical address of entry_pgdir into cr3.

entry_pgdir is defined in entrypgdir.c.

movl $(RELOC(entry_pgdir)), %ecx

movl %ecx, %cr3

Enable PSE for 4MB pages.

movl %cr4, %ecx

orl $(CR4_PSE), %ecx

movl %ecx, %cr4

Turn on paging.

movl %cr0, %ecx

orl $(CR0_PE|CR0_PG|CR0_WP), %ecx

movl %ecx, %cr0

...

He notices that before executing the instruction movl %ecx, %cr0, the contents at memory
addresses 0x00100000 and at 0xf0100000 are 0x1badb002 and 0x00000000, respectively:

(gdb) x/i $pc

=> 0x0010002f: mov %ecx,%cr0

(gdb) x/w 0x00100000

0x00100000: 0x1badb002

(gdb) x/w 0xf0100000

0xf0100000: 0x00000000

After a single step, both memory addresses contain the value 0x1badb002:

(gdb) si

...

(gdb) x/w 0x00100000

0x00100000: 0x1badb002

(gdb) x/w 0xf0100000

0xf0100000: 0x1badb002

Ben thinks that the instruction movl %ecx, %cr0 copies the data from memory address
0xf0100000 to overwrite 0x00100000. Do you agree with him? Explain why or why not.

Solution: No - 0xf0100000 and 0x00100000 are mapped to the same physical address
once paging is on.

Page 3 of 15

II. Physical world or virtual reality

(a) (10 points) Check either “physical address” or “virtual address” for underlined values from
JOS (no need to justify your answers here).

A 256KB memory range starting from 0xfffc0000 in an E820 memory map:
� physical address � virtual address

The kernel pointer kern_pgdir pointing to the kernel’s page directory:
� physical address � virtual address

The user pointer pages pointing to read-only copies of the Page structures:
� physical address � virtual address

The value of the %cr3 control register when paging is enabled:
� physical address � virtual address

The value of pcif->reg_base[5], the SATA/AHCI’s PCI base address register:
� physical address � virtual address

Page 4 of 15

(b) (5 points) Alyssa P. Hacker is writing a user-space program in JOS:

sys_page_alloc(0, (void *)0x1000000, PTE_P|PTE_W|PTE_U);

sys_page_alloc(0, (void *)0x2000000, PTE_P|PTE_W|PTE_U);

strcpy((void *)0x1000000, "hello");

strcpy((void *)0x2000000, "world");

cprintf("%s %s\n", 0x1000000, 0x2000000);

// TODO: your code here

cprintf("%s %s\n", 0x1000000, 0x2000000);

The expected output of the program is:

hello world

world hello

Help Alyssa complete the program by adding some sys_page_map call(s) at ”TODO”. It’s okay
to ignore the return values of the system call for this question.
The related system calls are:

• int sys_page_alloc(envid_t envid, void *va, int perm);

Allocate a page of memory and map it at va with permission perm in the address space
of envid. The page’s contents are set to 0. If a page is already mapped at va, that page is
unmapped first.

• int sys_page_map(envid_t srcenvid, void *srcva,

envid_t dstenvid, void *dstva, int perm);

Map the page ofmemory at srcva in srcenvid’s address space at dstva in dstenvid’s ad-
dress space with permission perm; perm has the same restrictions as in sys_page_alloc,
except that it also must not grant write access to a read-only page.

Solution:

int perm = PTE_P|PTE_W|PTE_U;

sys_page_map(0, (void *)0x1000000, 0, UTEMP, perm);

sys_page_map(0, (void *)0x2000000, 0, (void *)0x1000000, perm);

sys_page_map(0, UTEMP, 0, (void *)0x2000000, perm);

Page 5 of 15

III. Truth or dare

Ben is proposing and implementing a few changes to JOS. Please decide whether they are correct
or not, and briefly explain why.

(a) (5 points) Ben first writes a user-space program that attempts to access kernel memory
above ULIM. Describe what mechanism (in particular, which part of the CPU and which
part of JOS) prevents the user space from doing so.

Solution: Incorrect - theMMUwill enforce the permission bits set up by JOS; addresses
above ULIM do not have the PTE_U bit and are not accessible by user space.

(b) (5 points) Ben is attempting to reduce kernel memory consumption. While reading
multicore-JOS he realizes coarse-grain locking ensures only a single CPU can be in the ker-
nel at a time. He now believes that the per-cpu kernel stacks we allocate are an unnecessary
pre-caution and based on this analysis decides to remove all but one.

Solution: Incorrect - a small part of the kernel code is not protected by the lock. For
instance, two CPUs may trap into the kernel at the same time; before grabbing the lock,
they can trash each other’s state (e.g., Trapframe) if there is only one stack.

(c) (5 points) Now that Ben has solved his memory consumption problem, he is ready to work
on his Lab X Project: a parallel processing framework. He begins by using the copy-on-write
fork we implemented for Lab 4. He decides to define a global buffer static char buf[512],
which both the parent and child will read and write from to communicate after the fork.

Solution: Incorrect - due to copy-on-write, the parent and child will have separate
copies of the buffer once one of them writes to the buffer.
We also accept the answer that marks the buffer using PTE_SHARE.

Page 6 of 15

(d) (10 points) Ben enjoys the Lab X demos and wants to port his JOS from x86 to the 64-bit
ARM architecture (AArch64). In particular, he is interested in the two-level paging plan.
In some way, it looks similar to the two-level paging on x86, with a few differences. For
example, the architecture is 64-bit (rather than 32-bit); it uses two registers TTBR0 and
TTBR1 to hold base addresses of page tables (rather than one); the page table size in this
case is 64 KB (rather than 4 KB). Below is an excerpt from ARM’s manual.

The Memory Management Unit

ARM DEN0024A Copyright © 2015 ARM. All rights reserved. 12-10
ID050815 Non-Confidential

4. In Figure 12-7 on page 12-9, the page table entry refers to a 512MB page (it is a block
descriptor).

5. Bits [47:29] are taken from this page table entry and form bits [47:29] of the Physical
Address.

6. Because we have a 512MB page, bits [28:0] of the VA are taken to form PA[28:0]. See
Effect of granule sizes on translation tables on page 12-15.

7. The full PA[47:0] is returned, along with additional information from the page table entry.

In practice, such a simple translation process severely limits how finely you can divide up your
address space. Instead of using only this first-level translation table, a first-level table entry can
also point to a second-level page table.

In this way, an OS can further divide a large section of virtual memory into smaller pages. For
a second-level table, the first-level descriptor contains the physical base address of the
second-level page table. The Physical Address that corresponds to the Virtual Address requested
by the processor, is found in the second-level descriptor.

Figure 12-8 shows an example of translation for a 64-bit granule starting at stage 1, level 2 for
a normal 64KB page.

Figure 12-8 Virtual to Physical Address translation for a 64KB page

Each second-level table is associated with one or more first-level entries. You can have multiple
first-level descriptors that point to the same second-level table, which means you can alias
several virtual locations to the same Physical Address.

...

63 0

Level 2 index PA [15:0]
63 0

Index in table

Virtual address from core

L2 page table

TTBRx
Low bits of virtual
address form low bits of
physical address

282941

...

PA [15:0]

Page table
base address

TTBR select

PA[47:16]

...

Page table entry
contains PA [47:29]

PA

VA Level 3 index
1516

63 0

Page table
base address

L3 page table

...

1. If VA[63:42] = 1 then TTBR1 is used for the base address for the first page table. When
VA[63:42] = 0, TTBR0 is used for the base address for the first page table.
2. The page table contains 8192 64-bit page table entries, and is indexed via VA[41:29]. The
MMU reads the pertinent level 2 page table entry from the table.
3. TheMMUchecks the level 2 page table entry for validity andwhether or not the requested
memory access is allowed. Assuming it is valid, the memory access is allowed.
4. In the figure, the level 2 page table entry refers to the address of the level 3 page table (it
is a table descriptor).
5. Bits [47:16] are taken from the level 2 page table entry and form the base address of the
level 3 page table.
6. Bits [28:16] of the VA are used to index the level 3 page table entry. The MMU reads the
pertinent level 3 page table entry from the table.
7. TheMMUchecks the level 3 page table entry for validity andwhether or not the requested
memory access is allowed. Assuming it is valid, the memory access is allowed.
8. In the figure, the level 3 page table entry refers to a 64KB page (it is a page descriptor).
Bits [47:16] are taken from the level 3 page table entry and used to form PA[47:16]. Because
we have a 64KB page, VA[15:0] is taken to form PA[15:0].
9. The full PA[47:0] is returned, along with additional information from the page table
entries.

Page 7 of 15

Recall some of the macros you used in your JOS labs on x86:

// page directory entries per page directory

#define NPDENTRIES 1024

// page table entries per page table

#define NPTENTRIES 1024

// bytes mapped by a page

#define PGSIZE 4096

// log2(PGSIZE)

#define PGSHIFT 12

// Address in page table or page directory entry

#define PTE_ADDR(pte) ((physaddr_t) (pte) & ~0xFFF)

Now help Ben modify these macros for AArch64 (two-level paging, 64 KB page size,
assuming physaddr_t and pte are 64-bit).

Solution:
NPDENTRIES 8192

NPTENTRIES 8192

PGSIZE 65536

PGSHIFT 16

PTE_ADDR(pte) ((physaddr_t) (pte) & 0x0000ffffffff0000ULL)

You may compute PGSHIFT from log
2
PGSIZE, or tell it directly from the figure where

the low 16 bits of an address are not translated.
PTE_ADDR should extract bits [47:16] of a page table entry according to bullets 5 and 8,
thereby the mask.

Page 8 of 15

IV. Concurrency or consistency

(a) Alyssa is reading Intel’s manual on x86’s memory consistency model. The manual provides
a set of code examples, using the following notational conventions:

• Arguments beginning with an “r”, such as r1 or r2, refer to registers (e.g., EAX) visible
only to the processor being considered.

• Memory locations are denoted with x, y, z.
• Stores are written as mov [_x], val, which implies that val is being stored into the

memory location x.
• Loads are written as mov r, [_x], which implies that the contents of the memory

location x are being loaded into the register r.

Your job is to help her understand some of the code examples, by describing an execution
of instructions that produces a given result. For example, 4 → 3 → 2 → 1 is an
execution where the instruction 4 running first, followed by 3 , 2 , and 1 in the end.
i. (5 points) Neither loads nor stores are reordered with the same kind of operations.

Processor 0 Processor 1

1 mov [_x], 1 3 mov r1, [_y]

2 mov [_y], 1 4 mov r2, [_x]

Initially x = y = 0

r1 = 1 and r2 = 0 is not allowed

Alyssa observes r1 = 1 in the end. Describe an execution that produces the result.

Solution: 1 → 2 → 3 → 4

ii. (5 points) A store may not be reordered with an earlier locked instruction.

Processor 0 Processor 1

1 xchg [_x], r1 3 mov r2, [_y]

2 mov [_y], 1 4 mov r3, [_x]

Initially x = y = 0, r1 = 1

r2 = 1 and r3 = 0 is not allowed

Alyssa observes r2 = 1 in the end. Describe an execution that produces the result.

Solution: 1 → 2 → 3 → 4

Page 9 of 15

(b) Recall the spinlock (slightly simplified) we used in JOS:

struct spinlock {

uint32_t locked;

};

void spin_lock(struct spinlock *lk)

{

while (xchg(&lk->locked, 1) != 0) { }

}

void spin_unlock(struct spinlock *lk)

{

xchg(&lk->locked, 0);

}

The function xchg, a wrapper over the corresponding xchg instruction, atomically reads
the old value at a given memory address and writes a new value to that address.

uint32_t xchg(volatile uint32_t *addr, uint32_t newval)

{

uint32_t result;

asm volatile("lock; xchgl %0, %1"

: "+m" (*addr), "=a" (result)

: "1" (newval)

: "cc");

return result;

}

Alyssa is considering some optimizations to the spinlock code, and she needs your help.
For each case,

• If you think the optimization is correct, briefly explain why.
• Otherwise, describe an execution that leads to incorrect results; be specific about the

number of CPUs/threads and the interleaving.

You may refer to the code examples from part (a).

Page 10 of 15

i. (5 points) Replace xchg with simple memory load and store:

void spin_lock(struct spinlock *lk)

{

while (lk->locked) { }

lk->locked = 1;

}

void spin_unlock(struct spinlock *lk)

{

lk->locked = 0;

}

Solution: Incorrect - two CPUs can both proceed to the while loop at the same
time; as lk->locked is 0, they both think they have acquired the lock and set
lk->locked to 1, violating mutual exclusion.

ii. (5 points) Keep xchg in spin_lock and use memory store in spin_unlock:

void spin_lock(struct spinlock *lk)

{

while (xchg(&lk->locked, 1) != 0) { }

}

void spin_unlock(struct spinlock *lk)

{

lk->locked = 0;

}

Solution: Correct - in the original spin_unlock, xchg is a barrier that prevents any
memory operation from being reordered across it, which is not necessary. All we
need here is that memory operations within the critical section cannot be reordered
out of it (i.e., not after spin_unlock). The x86 TSO memory model guarantees that
for the new spin_unlock that uses memory store; see part (a) or Intel’s manual.
We also accept answers that refer to the code comment in spin_unlock in xv6/JOS.

Page 11 of 15

V. The art of persistence

(a) In xv6, each inode has 12 direct blocks and one single indirect block. Since xv6 uses single-
sector blocks, each block has 512 bytes. Given that each block number takes four bytes, one
single indirect block can hold up to 512/4 = 128 block numbers. Therefore, each file can
grow up to 12 + 128 = 140 blocks (or 140 × 512 = 71, 680 bytes).

i. (2 points) When doing the “big file” exercise, Ben changes xv6 files to have 11 direct
blocks, one single indirect block, and one double indirect block. What’s the maximum
file size (# of blocks)? Write down an expression for computing it (no need to calculate
the final value).

Solution: 11 + 128 + 1282

ii. (3 points) Alyssa changes xv6 files to have 10 direct blocks, one single indirect block,
one double indirect block, and one triple indirect block. What’s the maximum file
size this time (# of blocks)? Write down an expression for computing it (no need to
calculate the final value).

Solution: 10 + 128 + 1282 + 1283

Page 12 of 15

(b) Recall that the basic disk operations are:

• read(blkno): return the data in block blkno.
• write(blkno, data): store data in block blkno; may be cached/reordered by the disk.
• flush(): force data out of the disk cache to physical medium.

We assume write is atomic: either the data of an entire block is written on disk, or none.
After reading the Arrakis paper, Alyssa decides to write a simple on-disk data structure, a
vector, using these disk operations. Her plan is to store the vector size 𝑛 (i.e., the number of
elements) in disk block 0, and to store the 𝑖-th element (0 ≤ 𝑖 < 𝑛) in block 𝑖 + 1.
One function Alyssa tries to implement is appending an element to the on-disk vector. The
pseudo code is the following:

append(data):

n = read(0) // read the current vector size n

assert n < N - 1 // assume the disk has N blocks in total

write(0, n + 1) // update the vector size to (n + 1)

write(n + 1, data) // store the new data in the tail

The pseudo code for reading the data of the 𝑖-th element is the following:

elem(i):

assert i < read(0)

return read(i + 1)

Initially, the vector is empty: block 0 (i.e., 𝑏0) contains “0”; other blocks (i.e., 𝑏1, … , 𝑏𝑁−1)
contain garbage data (denoted as ∅).

0 ∅ ∅ ∅ … ∅

𝑏0 𝑏1 𝑏2 𝑏3 … 𝑏𝑁−1

Alyssa invokes append("CSE"), followed by a flush. The on-disk vector becomes:

1 CSE ∅ ∅ … ∅

𝑏0 𝑏1 𝑏2 𝑏3 … 𝑏𝑁−1

Page 13 of 15

i. (5 points) Alyssa continues to invoke append("451"). The power suddenly goes off.
List all the possible states of the on-disk vector.

Solution:

1 CSE ∅ ∅ … ∅

𝑏0 𝑏1 𝑏2 𝑏3 … 𝑏𝑁−1

1 CSE 451 ∅ … ∅

2 CSE ∅ ∅ … ∅

2 CSE 451 ∅ … ∅

We also accept a more general answer: after Alyssa invokes append("451") 𝑘 times,

• 𝑏0 can be any value in the range [1, 𝑘 + 1];

• 𝑏1 is “CSE”;

• 𝑏2, … 𝑏𝑘+1 can be either ∅ or “451,” independently;

• 𝑏𝑘+2, … , 𝑏𝑁−1 are all ∅.

ii. (5 points) The on-disk vector is considered well-formed if:
• the vector size 𝑛 in block 0 is within the range [0,𝑁 − 1]; and
• elem(𝑖) never returns garbage data, given 0 ≤ 𝑖 < 𝑛.

Based on the pseudo code of append and elem, is the on-disk vector always well-formed,
even in the presence of power outages? If yes, briefly explain why. If not, modify append
and/or elem to ensure that.

Solution: Not always well-formed (e.g., 𝑏0 = 2, 𝑏1 = "CSE", and 𝑏2 = ∅). To fix
append, swap the two writes to write data before updating the vector size, and insert
a flush to avoid reordering.

append(data):

n = read(0)

assert n < N - 1

write(n + 1, data)

flush()

write(0, n + 1)

Page 14 of 15

VI. CSE 451

We would like to hear your opinions. Any answer, except no answer, will receive full credit.

(a) (2 points) Describe the most memorable bug you have made in the JOS labs.

Solution: “One time I was working on I believe lab4 and I got distracted and followed
an ant around the room for 3 whole hours.”
—Alex Melnik

(b) (2 points) Are there any topics you would like to see added to or removed from the class?

Solution: Add more on networking (10), concurrency (9), file system (4), 64-bit (3),
drivers (3).

(c) (2 points) What is the best aspect of CSE 451?

Solution: Labs (22), understanding how OS works (11), building an OS (6), staff (6).

(d) (2 points) What is the worst aspect of CSE 451?

Solution: Bugs (11), labs (8), no slides (4), final (3).

(e) (2 points) Circle true or false for the statement.
True False Princess Leia was held captive in Super Block AA-23.

Solution: F - should be Detention Block AA-23.

End of Quiz — Enjoy the break!

Page 15 of 15

