Caching and Virtual Memory
Main Points

• Can we provide the illusion of near infinite memory in limited physical memory?
 – Demand-paged virtual memory
 – Memory-mapped files

• How do we choose which cache entry to replace?
 – FIFO, MIN, LRU, LFU, Clock

• What types of workloads does caching work for, and how well?
 – Spatial/temporal locality vs. Zipf workloads
Demand Paging (Before)

Page Table

<table>
<thead>
<tr>
<th>Frame</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Page B</td>
<td>Frame for B</td>
</tr>
<tr>
<td>Virtual Page A</td>
<td>Frame for A</td>
</tr>
</tbody>
</table>

Physical Memory

Page Frames

Disk

Page A

Page B
Demand Paging (After)

<table>
<thead>
<tr>
<th>Page Table</th>
<th>Physical Memory</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>Access</td>
<td>Page Frames</td>
</tr>
<tr>
<td>Virtual Page B</td>
<td>Frame for B</td>
<td>R/W</td>
</tr>
<tr>
<td>Virtual Page A</td>
<td>Frame for A</td>
<td>Invalid</td>
</tr>
</tbody>
</table>

Page B
Demand Paging

1. TLB miss
2. Page table walk
3. Page fault (page invalid in page table)
4. Trap to kernel
5. Convert address to file + offset
6. Allocate page frame
 - Evict page if needed
7. Initiate disk block read into page frame
8. Disk interrupt when DMA complete
9. Mark page as valid
10. Resume process at faulJng instruction
11. TLB miss
12. Page table walk to fetch translation
13. Execute instruction
Allocating a Page Frame

• Select old page to evict
• Find all page table entries that refer to old page
 – If page frame is shared
• Set each page table entry to invalid
• Remove any TLB entries
 – Copies of now invalid page table entry
• Write changes to page to disk, if necessary
How do we know if page has been modified?

• Every page table entry has some bookkeeping
 – Has page been modified?
 • Set by hardware on store instruction to page
 • In both TLB and page table entry
 – Has page been used?
 • Set by hardware on load or store instruction to page
 • In page table entry on a TLB miss

• Can be reset by the OS kernel
 – When changes to page are flushed to disk
 – To track whether page is recently used
Keeping Track of Page Modifications (Before)

- TLB:
 - Frame:
 - Access: R/W
 - Dirty: No

- Page Table:
 - Frame: Frame for A
 - Access: R/W
 - Dirty: No
 - Frame: Frame for B
 - Access: Invalid

- Physical Memory Page Frames:
 - Old Page A
 - Old Page B

- Disk:
 - Page A
Keeping Track of Page Modifications (After)

TLB

<table>
<thead>
<tr>
<th>Frame</th>
<th>Access</th>
<th>Dirty</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R/W</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Virtual Page B

<table>
<thead>
<tr>
<th>Frame</th>
<th>Access</th>
<th>Dirty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame for B</td>
<td>Invalid</td>
<td></td>
</tr>
</tbody>
</table>

Virtual Page A

<table>
<thead>
<tr>
<th>Frame</th>
<th>Access</th>
<th>Dirty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame for A</td>
<td>R/W</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Physical Memory Page Frames

New Page A

Disk

Old Page A

Old Page B
Emulating a Modified Bit

• Some processor architectures do not keep a modified bit in the page table entry
 – Extra bookkeeping and complexity

• OS can emulate a modified bit:
 – Set all clean pages as read-only
 – On first write, take page fault to kernel
 – Kernel sets modified bit, marks page as read-write
Models for Application File I/O

• Explicit read/write system calls
 – Data copied to user process using system call
 – Application operates on data
 – Data copied back to kernel using system call

• Memory-mapped files
 – Open file as a memory segment
 – Program uses load/store instructions on segment memory, implicitly operating on the file
 – Page fault if portion of file is not yet in memory
 – Kernel brings missing blocks into memory, restarts process
Advantages to Memory-mapped Files

• Programming simplicity, esp for large file
 – Operate directly on file, instead of copy in/copy out

• Zero-copy I/O
 – Data brought from disk directly into page frame

• Pipelining
 – Process can start working before all the pages are populated

• Interprocess communication
 – Shared memory segment vs. temporary file
From Memory-Mapped Files to Demand-Paged Virtual Memory

• Every process segment backed by a file on disk
 – Code segment -> code portion of executable
 – Data, heap, stack segments -> temp files
 – Shared libraries -> code file and temp data file
 – Memory-mapped files -> memory-mapped files
 – When process ends, delete temp files

• Provides the illusion of an infinite amount of memory to programs
 – Unified LRU across file buffer and process memory
Cache Replacement Policy

• On a cache miss, how do we choose which entry to replace?
 – Assuming the new entry is more likely to be used in the near future
 – In direct mapped caches, not an issue!

• Policy goal: reduce cache misses
 – Improve expected case performance
 – Also: reduce likelihood of very poor performance
A Simple Policy

• Random?
 – Replace a random entry

• FIFO?
 – Replace the entry that has been in the cache the longest time
 – What could go wrong?
FIFO in Action

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td>E</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>A</td>
<td></td>
<td></td>
<td>E</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>B</td>
<td>A</td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>C</td>
<td>B</td>
<td></td>
</tr>
</tbody>
</table>

Worst case for FIFO is if program strides through memory that is larger than the cache
MIN, LRU, LFU

• MIN
 – Replace the cache entry that will not be used for the longest time into the future
 – Optimality proof based on exchange: if evict an entry used sooner, that will trigger an earlier cache miss

• Least Recently Used (LRU)
 – Replace the cache entry that has not been used for the longest time in the past
 – Approximation of MIN

• Least Frequently Used (LFU)
 – Replace the cache entry used the least often (in the recent past)
LRU/MIN for Sequential Scan

<table>
<thead>
<tr>
<th>LRU</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
</tr>
<tr>
<td>LRU</td>
<td>+</td>
</tr>
<tr>
<td>MIN</td>
<td>+</td>
</tr>
</tbody>
</table>
LRU

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>D</th>
<th>A</th>
<th>E</th>
<th>B</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIFO

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>+</th>
<th>B</th>
<th>+</th>
<th>C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIN

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>A</th>
<th>C</th>
<th>B</th>
<th>D</th>
<th>A</th>
<th>D</th>
<th>E</th>
<th>D</th>
<th>A</th>
<th>E</th>
<th>B</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>B</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Belady’s Anomaly

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td>D</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td>A</td>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Clock Algorithm: Estimating LRU

- Periodically, sweep through all pages
- If page is unused, reclaim
- If page is used, mark as unused
Nth Chance: Not Recently Used

• Periodically, sweep through all page frames
• If page hasn’t been used in any of the past N sweeps, reclaim
• If page is used, mark as unused and set as active in current sweep
Emulating a Use Bit

• Some processor architectures do not keep a use bit in the page table entry
 – Extra bookkeeping and complexity

• OS can emulate a use bit:
 – Set all unused pages as invalid
 – On first read/write, take page fault to kernel
 – Kernel sets use bit, marks page as read or read/write
Working Set Model

- **Working Set**: set of memory locations that need to be cached for reasonable cache hit rate
- **Thrashing**: when system has too small a cache
Phase Change Behavior

- Programs can change their working set
- Context switches also change working set

![Graph showing cache hit rate over time with phases of change and new equilibrium.]
Question

• What happens to system performance as we increase the number of processes?
 – If the sum of the working sets > physical memory?
Thrashing

Throughput vs. Number of Active Processes
Zipf Distribution

• Caching behavior of many systems are not well characterized by the working set model
• An alternative is the Zipf distribution
 – Popularity $\sim 1/k^c$, for kth most popular item, $1 < c < 2$
Zipf Distribution

Popularity vs. Rank
Zipf Examples

- Web pages
- Movies
- Library books
- Words in text
- Salaries
- City population
- ...

Common thread: popularity is self-reinforcing
Zipf and Caching

Cache Miss Rate

Cache Size (Log Scale)
Definitions

• Cache
 – Copy of data that is faster to access than the original
 – Hit: if cache has copy
 – Miss: if cache does not have copy

• Cache block
 – Unit of cache storage (multiple memory locations)

• Temporal locality
 – Programs tend to reference the same memory locations multiple times
 – Example: instructions in a loop

• Spatial locality
 – Programs tend to reference nearby locations
 – Example: data in a loop
Cache Concept (Read)

Fetch Address

Address In Cache?

Yes:
Store Value in Cache

No:
Cache Concept (Write)

Write through: changes sent immediately to next level of storage

Write back: changes stored in cache until cache block is replaced
Memory Hierarchy

<table>
<thead>
<tr>
<th>Cache</th>
<th>Hit Cost</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st level cache/first level TLB</td>
<td>1 ns</td>
<td>64 KB</td>
</tr>
<tr>
<td>2nd level cache/second level TLB</td>
<td>4 ns</td>
<td>256 KB</td>
</tr>
<tr>
<td>3rd level cache</td>
<td>12 ns</td>
<td>2 MB</td>
</tr>
<tr>
<td>Memory (DRAM)</td>
<td>100 ns</td>
<td>10 GB</td>
</tr>
<tr>
<td>Data center memory (DRAM)</td>
<td>100 μs</td>
<td>100 TB</td>
</tr>
<tr>
<td>Local non-volatile memory</td>
<td>100 μs</td>
<td>100 GB</td>
</tr>
<tr>
<td>Local disk</td>
<td>10 ms</td>
<td>1 TB</td>
</tr>
<tr>
<td>Data center disk</td>
<td>10 ms</td>
<td>100 PB</td>
</tr>
<tr>
<td>Remote data center disk</td>
<td>200 ms</td>
<td>1 XB</td>
</tr>
</tbody>
</table>

i7 has 8MB as shared 3rd level cache; 2nd level cache is per-core
Cache Lookup: Fully Associative

<table>
<thead>
<tr>
<th>address</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>=?</td>
<td></td>
</tr>
<tr>
<td>=?</td>
<td></td>
</tr>
<tr>
<td>=?</td>
<td></td>
</tr>
<tr>
<td>=?</td>
<td></td>
</tr>
</tbody>
</table>

match at any address?

- yes

return value
Cache Lookup: Direct Mapped

<table>
<thead>
<tr>
<th>address</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

hash(address) →

=? match at hash(address)?

yes

return value
Cache Lookup: Set Associative

<table>
<thead>
<tr>
<th>hash(address)</th>
<th>address</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0x0053</td>
<td></td>
</tr>
</tbody>
</table>

=？

match at hash(address)?

=？

match at hash(address)?

yes

return value

<table>
<thead>
<tr>
<th>address</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x120d</td>
<td></td>
</tr>
</tbody>
</table>

yes

return value
Page Coloring

• What happens when cache size >> page size?
 – Direct mapped or set associative
 – Multiple pages map to the same cache line

• OS page assignment matters!
 – Example: 8MB cache, 4KB pages
 – 1 of every 2K pages lands in same place in cache

• What should the OS do?
Page Coloring

Processors

Virtual Address

Address Mod K

Cache

Memory

0

K

2K

3K