
CSE 451
Problem Set #1

Due: 9:00pm, Tuesday, April 29, 2014

To be done INDIVIDUALLY

For this assignment, use Mesa-style locks and condition variables and follow best practices in
terms of ensuring correctness.

1. With data parallel programming, the computation executes in parallel across a data set, with
each thread operating on a different partition of the data. Once all threads have completed their
work, they can safely use each other's results in the next (data parallel) step in the algorithm.
MapReduce is an example of data parallel programming, but there are many other systems with
the same structure.

For this to work, we need a way to efficiently check whether all \n\ threads have finished a
given step. This is called a synchronization barrier. A synchronization barrier has one
operation, \checkin\. A thread calls \checkin\ when it has completed its work; no thread may
return from \checkin\ until all \n\ threads have checked in. Once all threads have checked in, it
is safe for the threads to use the results produced by other threads in the previous step.

a. Implement a single-use synchronization barrier. The barrier is initialized with the number of
threads that will check in. You may assume that each of the \n\ threads calls \checkin\ exactly
once.

b. Most data parallel programs execute a series of steps, with a barrier after each step. Explain
what can happen if the program tries to reuse the same barrier after each step, given your
implementation.

Extra credit: implement a reusable synchronization barrier, one that is safe to use after each
step.

