
CSE	 451	
Problem	 Set	 #1	

	
Due:	 9:00pm,	 Friday,	 October	 31,	 2014	

To	 be	 done	 INDIVIDUALLY	
	

1. A river crossing is shared by both cannibals and missionaries. One boat is available to
cross the river, but it only seats four people and must always carry a full load. In order to
guarantee the safety of the missionaries, you cannot put three cannibals and one
missionary in the same boat -- because the cannibals would gang up and eat the
missionary. Similarly, you cannot put three missionaries in the same boat as a cannibal --
because the missionaries would gang up and convert the cannibal ;-). All other
combinations are safe.

Two procedures are needed: MissionaryArrives and CannibalArrives, called by a
missionary or cannibal when he/she arrives at the river bank. (Since they are duals, you
only need to write one of the procedures.) The procedures arrange the arriving
missionaries and cannibals into safe boatloads; once the boat is full, one thread calls
Rowboat. Once the call to Rowboat returns, and not before, the four threads representing
the people in the boat can return/proceed. (A long rope is tied to the boat, so it can be
pulled empty back to the start.)

You must use locks and Mesa-style condition variables to implement the solution, using
the best practices as defined in class and the textbook. There should be no busy-waiting.
There must also be no useless waiting: missionaries and cannibals should not wait if there
are enough of them for a safe boatload.

2. A synchronous buffer is one where the thread placing an item into the buffer waits
until the thread retrieving the item has gotten it, and then the sender can return.

SyncBuf::put(item): put item into the buffer and return only once the item has been
retrieved by some thread.

SyncBuf::get(): wait until there is an item in the buffer, and then return it.

Any number of threads can concurrently call SyncBuf::get and put; the implementation
pairs off puts and gets – each put item should be returned exactly once. The threads do
not need to be paired in any particular order.

You must use locks and Mesa-style condition variables to implement the solution, using
the best practices as defined in class and the textbook. There should be no busy-waiting.
There must also be no useless waiting: the put and get should return if there is a
corresponding call to the other routine.

