CSE 451: Operating Systems
Winter 2013

Prolegomena

Gary Kimura
Introduction

• Instructor
 – A bit about myself
 – Gary Kimura CSE 476

• Sources of Information
 – Lectures
 – Reading
 – Projects / Source code
 – All are important

• Lectures
 – Supplement rather than recapitulate text
 – Lots of historical/developmental info
 – Lots of “why was it done this way” info
 – ASK QUESTIONS!
Class tools

- **Primary textbook**
 - Anderson and Dahlin, *Operating Systems Principle and Practices*
 - Keep up with the reading.
 - Far better for you to read the chapters BEFORE the class

- **Ancillary C and Windows reference books**
 - Kernighan and Ritchie, *The C Programming Language*
 - Russinovich and Solomon, *Microsoft Windows Internals*

- **Class email list**

- **Class discussion board**
Class projects

- Projects based on Windows Research Kernel (Windows 2003 Server) sources
- 4 projects
 - Two individual projects and two group projects
 - You Will Write Code. You Will Read Lots of Code
 - You are either very familiar with C or will become so quickly
- Form 3-person teams during the first week of class
 - Pick one person from your team to communicate to the TAs the names of the members of your team
 - If this is not accomplished by January 17 you will be randomly assigned to a team
Grading

• Goal is to determine what YOU have learned and can express
 – Scores available via Catalyst

• Grading scale (subject to change)
 – 40% Projects (5%, 5%, 15%, 15%)
 – 20% Friday Quizzes
 • Expect 7-8, dropping the lowest or missed quiz. No make up for missed quizzes. Plan accordingly.
 – 30% Final Exam
 – 10% Participation

• Policies
 – Collaboration vs Cheating
 – Late projects
Course Objectives

• Two views of an OS
 – The OS user’s (i.e., application programmer’s) view
 – The OS implementer’s view

• In this class we will learn:
 – Historical motivations
 – What are the major parts of an O.S.
 – How is the O.S. and each sub-part structured
 – What are the important common interfaces
 – What are the important policies
 – What algorithms are typically used
 – What engineering/practicality tradeoffs were used
Philosophy

• You may not ever build an OS
 – But as a computer scientist or computer engineer you need to understand the foundations
 – Most importantly, operating systems exemplify the sorts of engineering design tradeoffs that you’ll need to make throughout your careers – compromises among and within cost, performance, functionality, complexity, schedule …

• A good OS should be easily usable by everyone