
1

CSE 451: Operating Systems

Spring 2013

Module 28

Course Review

Ed Lazowska

lazowska@cs.washington.edu

Allen Center 570

© 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2

Architectural Support

• Privileged instructions
– what are they?

– how does the CPU know whether to execute them?

– why do they need to be privileged?

– what do they manipulate?

• Protected memory
– what are the various ways it can be implemented?

• System call
– what are the steps in handling?

• Interrupts, exceptions, traps
– definition of each

– what are the steps in handling each?

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

OS Structure

• What are the major components of an OS?

• How are they organized?
– what is the difference between monolithic, layered,

microkernel OS’s?
• advantages and disadvantages?

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

Processes

• What is a process? What does it virtualize?
– differences between program, process, thread?

– what is contained in process?
• what does PCB contain?

• PCB vs. address space

– state queues?
• which states, what transitions are possible?

• when do transitions happen?

• Process manipulation
– what does fork() do? how about exec()?

– how do shells work?

© 2013 Gribble, Lazowska, Levy, Zahorjan 5

Threads

• What is a thread?
– why are they useful?

– what’s the address space look like?

– TCB vs. PCB

– user-level vs. kernel-level threads?
• performance implications

• functionality implications

• How does thread scheduling differ from process
scheduling?
– what operations do threads support?

– what happens on a thread context switch? what is saved in
TCB?

– preemptive vs. non-preemptive scheduling?

© 2013 Gribble, Lazowska, Levy, Zahorjan 6

Scheduling

• Long term vs. short term

• When does scheduling happen?
– job changes state, interrupts, exceptions, job creation

• Scheduling goals?
– maximize CPU utilization

– maximize job throughput

– minimize {turnaround time | waiting time | response time}

– batch vs. interactive: what are their goals?

• What is starvation? what causes it?

• FCFS/FIFO, SPT, SRPT, priority, RR, MLFQ…

2

© 2013 Gribble, Lazowska, Levy, Zahorjan 7

Synchronization

• Why do we need it?
– data coordination? execution coordination?

– what are race conditions? when do they occur?

– when are resources shared? (variables, heap objects, …)

• What is mutual exclusion?
– what is a critical section?

– what are the requirements of critical sections?
• mutex, progress, bounded waiting, performance

– what are mechanisms for programming critical sections?
• locks, semaphores, monitors, condition variables

© 2013 Gribble, Lazowska, Levy, Zahorjan 8

Locks

• What does it mean for acquire/release to be atomic?

• how can locks be implemented?
– spinlocks? interrupts? OS/thread-scheduler?

– test-and-set?

– limitations of locks?

© 2013 Gribble, Lazowska, Levy, Zahorjan 9

Semaphores and Monitors

• Semaphores
– basic operations: wait vs. signal?

– difference between semaphore and lock?

– when and how do threads block on semaphores? when do
they wake?

– bounded buffers problem
• producer/consumer

– readers/writers problem

– how is all of this implemented
• moving descriptors on and off queues

• Monitors
– the operations and their implementation

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

• Understand clearly the queue manipulations involved
in implementing semaphores, monitors, condition
variables, etc.

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

Deadlock

• static prevention, dynamic avoidance,
detection/recovery

• tradeoffs among these

• graph reducibility

• approaches
– Hold and wait

– Resource ordering

– Banker’s algorithm

– Detect and eliminate

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

Memory Management

• Mechanisms for implementing memory management
– physical vs. virtual addressing

– base/limit registers

– partitioning, paging, segmentation

• Internal and external fragmentation

3

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

Paged Virtual Memory

• Virtual memory

• Page faults

• Demand paging
– don’t try to anticipate

• Page replacement
– local, global, hybrid

• Locality
– temporal, spatial

• Working set

• Thrashing

• What is the complete set of steps for handling a page fault
– start to finish?

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

Page replacement algorithms

• Belady’s – optimal, but unrealizable

• FIFO – replace page loaded furthest in the past

• LRU – replace page referenced furthest in the past
– approximate using PTE reference bit

• LRU Clock – replace page that is “old enough”

• Working Set – keep the working set in memory

• Page Fault Frequency – grow/shrink number of
frames as a function of fault rate

• VAX/VMS (two-level FIFO due to lack of a referenced
bit)

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

Multi-level page tables, TLBs

• How to reduce overhead of paging?
– how do multi-level page tables work?

– what problem does TLB solve?

– why do they work?

– how are they managed?
• software vs. hardware managed

• Page faults
– what is one? how is it used to implement demand paging?

– what is complete sequence of steps for translating a virtual
address to a PA?

• all the way from TLB access to paging in from disk

• MM tricks
– shared memory? Mapped files? copy-on-write?

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

Disks

• Memory hierarchy and locality

• Physical disk structure
– platters, surfaces, tracks, sectors, cylinders, arms, heads

• Disk interface
– how does OS make requests to the disk?

• Disk performance
– access time = seek + rotation + transfer

• Disk scheduling
– how does it improve performance?

– FCFS, SSTF, SCAN, C-SCAN?

• Implications of solid state drives

© 2013 Gribble, Lazowska, Levy, Zahorjan 17

Files and Directories

• What is a file
– what operations are supported?
– what characteristics do they have?
– what are file access methods?

• What is a directory
– what are they used for?
– how are they implemented?
– what is a directory entry?

• How does path name translation work?

• ACLs vs. capabilities
– matrix
– advantages and disadvantages of each

© 2013 Gribble, Lazowska, Levy, Zahorjan 18

File system data structures

• General strategies?
– contiguous, linked, indexed?

– tradeoffs?

• What is a Unix inode?
– how are they different than directories?

– how are inodes and directories used to do path resolution,
and find files?

• Everything about the Unix File System (UFS)

4

© 2013 Gribble, Lazowska, Levy, Zahorjan 19

FS buffer cache

• What is a buffer cache?
– why do OS’s use them?

• What are differences between caching reads and
writes?
– write-through, write-back, write-behind?

– read-ahead?

© 2013 Gribble, Lazowska, Levy, Zahorjan 20

FFS, JFS, LFS

• What is FFS, how specifically does it improve over
original Unix FS?

• How about JFS, what is the key problem that it
solves, what are the basic ideas?

• How about LFS, what are the basic ideas, when does
it yield an improvement, when does it not?

© 2013 Gribble, Lazowska, Levy, Zahorjan 21

RAID

• Basic concepts of RAID
– stripe files across multiple disks to improve throughput

– compensate for decreased reliability with parity/ECC

• Sources of improvement as you go from RAID-0 to
RAID-5

• RAID vs. backup (they are different!)

© 2013 Gribble, Lazowska, Levy, Zahorjan 22

Networking

• ISO 7-layer model

• Ethernet protocol

• IP and routing

• TCP principles (sending a long message via
postcards)

• Protocol encapsulation/nesting

© 2013 Gribble, Lazowska, Levy, Zahorjan 23

RPC

• Basic idea – what does it buy you over message
passing?

• Subtopics: interface description language, stubs,
stub generation, parameter marshaling, binding,
runtime/transport, error handling, performance,
thread pools

• Transparency: when is distribution transparent, when
is it not?

© 2013 Gribble, Lazowska, Levy, Zahorjan 24

Distributed file systems

• Issues:
– Basic abstraction, naming, caching, sharing/coherency,

replication, performance

• Examples – compare and contrast various aspects
(and goals/environments) of:
– NFS

– AFS

– Sprite

– GFS

5

© 2013 Gribble, Lazowska, Levy, Zahorjan 25

Distributed systems

• Loosely-coupled, closely-coupled, tightly-coupled

• Grapevine as an example, in some detail

• Google web search as an example, in some detail

• BOINC

• For Grapevine and Google, focus on reliability,
scalability – how do they achieve these properties?

© 2013 Gribble, Lazowska, Levy, Zahorjan 26

Virtual Machine Monitors

• Basic concepts of VMM’s

• Modern examples:
– OS-X and Windows on the same laptop

– Server consolidation

– Amazon Web Services

• In some detail, what is the relationship between an
application, the guest OS on which it runs, the VMM,
and the hardware?
– How does control transfer appropriately?

– How do reconcile the fact that both the apps and the guest
OS’s are running in user mode?

– Be able to trace the handling of a syscall

© 2013 Gribble, Lazowska, Levy, Zahorjan 27

Security

• Principals, objects, rights

• Authentication, authorization, auditing

• “Gotchas” with simple password protection

• The distributed world
– Privacy

– Integrity

– Achieving them using symmetric (shared key) and
asymmetric (public/private key) systems

– Certificate authorities

– Spyware

– Confinement

© 2013 Gribble, Lazowska, Levy, Zahorjan 28

Cloud Computing

• Understand the OS aspects that it illustrates
– Commodity PCs (boards with CPUs, disks, memory) running

Unix

– Connected via LANs

– VMMs

– Load balancing

– Scheduling

© 2013 Gribble, Lazowska, Levy, Zahorjan 29

Projects

• You’re responsible for understanding all aspects of
the projects!

