
1

CSE 451: Operating Systems

Spring 2013

Module 18

Berkeley Log-Structured File System

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

© 2013 Gribble, Lazowska, Levy, Zahorjan © 2013 Gribble, Lazowska, Levy, Zahorjan 2

LFS inspiration

• Suppose, instead, what you wrote to disk was a log of
changes made to files
– log includes modified data blocks and modified metadata

blocks

– buffer a huge block (“segment”) in memory – 512K or 1M

– when full, write it to disk in one efficient contiguous transfer
• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk contains a single big long log of changes,
consisting of threaded segments

© 2013 Gribble, Lazowska, Levy, Zahorjan 3

LFS basic approach

• Use the disk as a log

• A log is a data structure that is written only at one
end

• If the disk were managed as a log, there would be
effectively no seeks

• The “file” is always added to sequentially

• New data and metadata (i-nodes, directories) are
accumulated in the buffer cache, then written all at
once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk write throughput

• Sounds simple – but really complicated under the
covers

© 2013 Gribble, Lazowska, Levy, Zahorjan 4

LFS vs. UNIX File System or FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

© 2013 Gribble, Lazowska, Levy, Zahorjan 55

LFS Challenges

• Locating data written in the log
– FS/FFS place files in a well-known location, LFS writes data

“at the end of the log”

• Even locating i-nodes!
– In LFS, i-nodes too go into the log!

• Managing free space on the disk
– Disk is finite, and therefore log must be finite

– So cannot just keep appending to log, ad infinitum!
• need to recover deleted blocks in old part of log

• need to fill holes created by recovered blocks

• (Note: Reads are the same as FS/FFS once you find
the i-node – and writes are a ton faster!)

© 2013 Gribble, Lazowska, Levy, Zahorjan 66

LFS: Locating data and i-nodes

• LFS uses i-nodes to locate data blocks, just like
FS/FFS

• LFS appends i-nodes to end of log, just like data
– makes them hard to find

• Solution:
– use another level of indirection: i-node maps

– i-node maps map i-node #s to i-node location

– so how do you find the i-node map?
• after all, changes to it must be appended to the log

• location of i-node map blocks are kept in a checkpoint region

• checkpoint region has a fixed location

– cache i-node maps in memory for performance

2

© 2013 Gribble, Lazowska, Levy, Zahorjan 77

LFS: File reads and writes

• Reads are no different than in FS/FFS, once we find
the i-node for the file
– The i-node map, which is cached in memory, gets you to the

i-node, which gets you to the blocks

• Every write causes new blocks to be added to the tail
end of the current “segment buffer” in memory
– When the segment is full, it’s written to disk

© 2013 Gribble, Lazowska, Levy, Zahorjan 88

LFS: Free space management

• Writing segments to the log eats up disk space

• Over time, segments in the log become fragmented
as we replace old blocks of files with new blocks
– i-nodes no longer point to blocks, but those blocks still

occupy their space in the log

– Imagine modifying a single block of a file, over and over
again – eventually this would chew up the entire disk!

• Solution: Garbage-collect segments with little “live”
data and recover the disk space

© 2013 Gribble, Lazowska, Levy, Zahorjan 99

LFS: Segment cleaning

• Log is divided into (large) segments

• Segments are threaded on disk
– segments can be anywhere

• Reclaim space by cleaning segments
– read segment

– copy live data to end of log

– now have free segment you can reuse!

• Cleaning is an issue
– costly overhead, when do you do it?

• A cleaner daemon cleans old segments, based on
– utilization: how much is to be gained by cleaning?

– age: how likely is the segment to change soon?

© 2013 Gribble, Lazowska, Levy, Zahorjan 10

LFS summary

• As caches get big, most reads will be satisfied from
the cache

• No matter how you cache write operations, though,
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic

• If you eventually put blocks (i-nodes, file content
blocks) back where they came from, then even if you
schedule disk writes cleverly, there’s still going to be
a lot of head movement (which dominates disk
performance)

© 2013 Gribble, Lazowska, Levy, Zahorjan 11

• Suppose, instead, what you wrote to disk was a log of
changes made to files
– log includes modified data blocks and modified metadata

blocks

– buffer a huge block (“segment”) in memory – 512K or 1M

– when full, write it to disk in one efficient contiguous transfer
• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk is just one big long log, consisting of
threaded segments

© 2013 Gribble, Lazowska, Levy, Zahorjan 12

• What happens when a crash occurs?
– you lose some work

– but the log that’s on disk represents a consistent view of the
file system at some instant in time

• Suppose you have to read a file?
– once you find its current i-node, you’re fine

– i-node maps provide a level of indirection that makes this
possible

• details aren’t that important

3

© 2013 Gribble, Lazowska, Levy, Zahorjan 13

• How do you prevent overflowing the disk (because
the log just keeps on growing)?
– segment cleaner coalesces the active blocks from multiple

old log segments into a new log segment, freeing the old log
segments for re-use

• Again, the details aren’t that important

© 2013 Gribble, Lazowska, Levy, Zahorjan 14

Tradeoffs

• LFS wins, relative to FFS
– metadata-heavy workloads

• small file writes

• deletes

(metadata requires an additional write, and FFS does this
synchronously)

• LFS loses, relative to FFS
– many files are partially over-written in random order

• file gets splayed throughout the log

• LFS vs. JFS
– JFS is “robust” like LFS, but data must eventually be written

back “where it came from” so disk bandwidth is still an issue

© 2013 Gribble, Lazowska, Levy, Zahorjan 15

LFS history

• Designed by Mendel Rosenblum and his advisor John
Ousterhout at Berkeley in 1991
– Rosenblum went on to become a Stanford professor and to co-

found VMware, so even if this wasn’t his finest hour, he’s OK

• Ex-Berkeley student Margo Seltzer (faculty at Harvard)
published a 1995 paper comparing and contrasting LFS with
conventional FFS, and claiming poor LFS performance in some
realistic circumstances

• Ousterhout published a “Critique of Seltzer’s LFS
Measurements,” rebutting her arguments

• Seltzer published “A Response to Ousterhout’s Critique of LFS
Measurements,” rebutting the rebuttal

• Ousterhout published “A Response to Seltzer’s Response,”
rebutting the rebuttal of the rebuttal

© 2013 Gribble, Lazowska, Levy, Zahorjan 16

• Moral of the story
– If you’re going to do OS research, you need a thick skin

– Very difficult to predict how a FS will be used
• So it’s hard to generate reasonable benchmarks, let alone a

reasonable FS design

– Very difficult to measure a FS in practice
• depends on a HUGE number of parameters, involving both

workload and hardware architecture

