

- Many possible metrics / performance goals (which sometimes conflict)
 - maximize CPU utilization
 - maximize throughput (requests completed / s)
 - minimize average response time (average time from submission of request to completion of response)
 - minimize average waiting time (average time from
 - submission of request to start of execution)
 minimize energy (joules per instruction) subject to
 - some constraint (e.g., frames/second)

© 2013 Gribble, Lazowska, Levy, Zahorjan

5

© 2013 Gribble, Lazowska, Levy, Zahorjan

6

FCFS/FIFO drawbacks

- Average response time can be lousy
 small requests wait behind big ones
- May lead to poor utilization of other resources – if you send me on my way, I can go keep another resource
 - busy
 FCFS may result in poor overlap of CPU and I/O activity
 - E.g., a CPU-intensive job prevents an I/O-intensive job from doing a small bit of computation, thus preventing it from going back and keeping the I/O subsystem busy
- Note: The more copies of the resource there are to be scheduled, the less dramatic the impact of occasional very large jobs (so long as there is a single waiting line)
 - E.g., many cores vs. one core

© 2013 Gribble, Lazowska, Levy, Zahorjan

17

Algorithm #4: Priority

- · Assign priorities to requests
 - choose request with highest priority to run next
 - if tie, use another scheduling algorithm to break (e.g., RR)
 - Goal: non-fairness (favor one group over another)
- · Abstractly modeled (and usually implemented) as multiple "priority queues"
 - put a ready request on the queue associated with its priority
- · Sounds perfect!

© 2013 Gribble, Lazowska, Levy, Zahorjan

```
23
```


22

24

- decrease priority as a function of accumulated processing time
- many ugly heuristics have been explored in this space

© 2013 Gribble, Lazowska, Levy, Zahorjan

Summary

- Scheduling takes place at many levels
- It can make a huge difference in performance

 this difference increases with the variability in service requirements
- Multiple goals, sometimes conflicting
- There are many "pure" algorithms, most with some drawbacks in practice – FCFS, SPT, RR, Priority
- Real systems use hybrids that exploit observed program behavior
- Scheduling is still important, and there are still new angles to be explored – particularly in large-scale datacenters for reasons of cost and energy

© 2013 Gribble, Lazowska, Levy, Zahorjan

31