
CSE 451: Operating Systems

Section 10

Project 3 wrap-up, final exam
review

Final exam review

Goal of this section: key concepts you should
understand

Not just a summary of lectures

 Slides coverage and final exam topics are not
bijective

Goal of CSE 451: tools for life

Goal of your life: ???

12/5/2013 2

Thread management

Queues

Why do thread libraries make use of queues?

Synchronization

What are the mechanisms for protecting critical
sections, how do they work, and when should
one be used over another?

Preemption

What is preemption and how does the process
of one thread preempting another work?

3 12/5/2013

Memory management

Purposes:

Resource partitioning / sharing

 Isolation

Usability

Paging

Segmentation

4 12/5/2013

Virtual memory

What happens on a virtual memory access?

5 12/5/2013

Virtual memory

What happens on a virtual memory access?

Address translation: who performs it?

 Page table lookup

 Translation Lookaside Buffer (TLB)

Page fault?

 Page replacement

 Process/queue management

How does all of this overhead pay off?

 Locality! Both temporal (in time) and spatial
(nearby).

6 12/5/2013

© 2010 Gribble, Lazowska, Levy, Zahorjan 7

Virtual memory

page

frame 0

page

frame 1

page

frame 2

page

frame Y

…

page

frame 3

physical memory

offset

physical address

page frame # page frame #

page table

offset

virtual address

virtual page #

Note: Each process

has its own page table!

12/5/2013

Page replacement

Algorithms:

Belady, FIFO, LRU, LRU clock / NRU, random,
working set…

 Local vs. global

How/why are any of these better or worse
than the others?

What happens when paging goes wrong?

Thrashing, 10-year old computers running XP?

8 12/5/2013

Advanced virtual memory

What problem does a TLB address?

What problem do two-level page tables
address?

What’s the key concept?

9 12/5/2013

Advanced virtual memory

What problem does a TLB address?

 Increases speed of virtual address translation

What problem do two-level page tables
address?

What’s the key concept?

 Indirection

10 12/5/2013

Secondary storage

Memory forms a hierarchy

Different levels of disk abstraction:

 Sectors

Blocks

 Files

What factor most influences the ways that
we interact with disks?

11 12/5/2013

Secondary storage

Memory forms a hierarchy

Different levels of disk abstraction:

 Sectors

Blocks

 Files

What factor most influences the ways that
we interact with disks?

 Latency

12 12/5/2013

13

Memory hierarchy

 Each level acts as a cache of lower levels
 (Stats more or less for Core i7 3770)

CPU registers

L1 cache

L2 cache

Primary Memory

Secondary Storage

Tertiary Storage

128 bytes

32 KiB

4 x 256 KiB

8 GiB

1 TiB

1 PiB

30 million cycles

??? cycles

1 cycle

4 cycles

11 cycles

100 cycles

© 2010 Gribble, Lazowska, Levy, Zahorjan 12/5/2013

L3 cache 8 MiB 39 cycles

File systems

What does a file system give you?

Useful abstraction for secondary storage

Organization of data

 Hierarchy of directories and files

 Sharing of data

14 12/5/2013

File system internals

Directories

Directory entries

Inodes

Files:

One inode per file

Multiple directory entries (links) per file

15 12/5/2013

Inode-based file system

Sequence of steps when I run echo “some
text” > /home/jay/file.txt ?
Open file:
 Get inode for / -> get data block for /

 Read directory entry for / -> get inode for /homes

 Repeat… -> get data block for file.txt, check permissions

Write to file:
 Modify data block(s) for file.txt in buffer cache

Close file:
 Mark buffer as dirty, release to buffer cache

 Kernel flushes dirty blocks back to disk at a later time

16 12/5/2013

Other file systems

What problem does each of these address?

BSD Unix fast file system (FFS):

 Performance: smarter physical disk layout

 Journaling file systems (JFS):

 Reliability: transactions prevent inconsistencies after
crash

Berkeley log-structured file system (LFS):

 Performance: even smarter physical disk layout?

17 12/5/2013

RAID

Striping: read/write from multiple disks
simultaneously

 Improves performance

Hurts reliability

Parity: store redundant information to allow
data recovery after disk failures

 Improves reliability

Hurts performance

18 12/5/2013

Devices and Drivers

How should the OS provide access to
physical hardware to user processes?
Multiplexing

Mutual exclusion

UNIX / Linux device driver model

Virtual devices, and what they can do for
you
 FUSE

19 12/5/2013

Networking

Layering

Encapsulation

20 12/5/2013

RPC

Benefits:

 Low-level details taken care of for you

Natural interface

Implementation issues:

Network failures / retries

Architecture differences

Performance

21 12/5/2013

Distributed file systems

Why do we want them?

 Location independence

 Large-scale data sharing

Why are they hard?

Consistency

Replication

Performance

Understand the target workloads

22 12/5/2013

Distributed systems

Scalability

 Limited by sharing

 How does this relate to multi-core CPUs?

Do more nodes equal more performance?

How do companies like Amazon, Facebook,
Google, Microsoft, etc. parallelize workloads?

23 12/5/2013

Virtual machine monitors

VMM is an additional layer between OS and
hardware

Can interpose on instruction execution, memory
accesses, I/O requests, and network
communication

24 12/5/2013

