
CSE 451: Operating Systems

Section 9

Debugging kernel modules, project 3

Preliminary project 2b feedback

Many groups disabled interrupts unnecessarily or
too early/for too long

 Do sthread_user_mutex_free and
sthread_user_cond_free need to disable
interrupts/acquire a lock?
 No: They are only invoked after all function calls using

them have finished

 Be consistent in whether you disable interrupts or
whether you acquire a lock to protect a certain data
structure: mixing the two is dangerous and can lead
to deadlocks

11/21/13 2

Debugging kernel modules

Debugging kernel modules with GDB is
tricky—GDB needs to know both what the
symbols are (from the .ko file) and where in
the kernel they are located

We have the kernel object (.ko) file, but how
can we figure out where in the running
kernel the symbols are located?

Answer: the kernel tells us!

11/21/13 3

Debugging kernel modules

After loading a kernel module in Qemu, look
under /sys/modules/[module-
name]/sections/ to see a file for each of its
sections:

> cd /sys/module/ext2undelete/sections/

> ls -A

.bss .init.text .smp_locks .text

.exit.text .note.gnu.build-id .strtab

__mcount_loc .gnu.linkonce.this_module

.rodata .symtab

11/21/13 4

Debugging kernel modules

The contents of each file is the address
within the kernel of the corresponding
section:

> cat .text .rodata .bss

0xffffffffa0000000

0xffffffffa0001030

0xffffffffa0002260

11/21/13 5

Debugging kernel modules

 Next, connect GDB to your running Qemu instance using the directions
on the VM Info course page, then load the module file’s symbols:

(gdb) add-symbol-file 451repo/project3/ext2undelete.ko \

 0xffffffffa0000000 -s .rodata 0xffffffffa0001030 \

 -s .bss 0xffffffffa0002260

add symbol table from file

"451repo/project3/ext2undelete.ko" at

.text_addr = 0xffffffffa0000000

.rodata_addr = 0xffffffffa0001030

.bss_addr = 0xffffffffa0002260

(y or n) y

Reading symbols from

451repo/project3/ext2undelete.ko...done.

11/21/13 6

http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#qemu

Debugging kernel modules

Now we’re set! Can examine symbols, set
breakpoints, etc. from the comfort of GDB

(Show demo here)

This material is also available as a tutorial on
the course website

11/21/13 7

http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#module_debug
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#module_debug

Project 3 tips

 How can we figure out which inodes have been
deleted?

 First step: Check the inode bitmap
 The bits of the inode bitmap describe which inodes are

currently in use
 If the address of the inode bitmap is ib_ptr, how can

we test if the nth inode is not in use?

 Second step: Check whether the inode was actually
deleted
 What tells us that an inode was deleted as opposed to

simply never having been used?

11/21/13 8

Project 3 tips

As an aside, arch/arm/include/asm/bitops.h
defines a number of efficient bitwise
operators

When ext2_new_inode in fs/ext2/ialloc.c
looks for the next available inode number, it
(indirectly) invokes the
find_first_zero_bit_le function, which
finds the index of the first zero bit for a little
endian integer of a given size

11/21/13 9

Project 3 tips

There are many scenarios to test to make
sure your undelete module is
working…check as many as you can!

Calls to undelete_read with a small buffer size
(for example, a single byte)

 Should advance buffer_read_offset without
reading the next block

 File systems spanning multiple block groups

 File systems with a variety of block sizes

11/21/13 10

