CSE 451: Operating Systems

Section 9
Debugging kernel modules, project 3



Preliminary project 2b feedback

Many groups disabled interrupts unnecessarily or
too early/for too long

Do sthread user mutex free and
sthread user cond free heed to disable

interrupts/acquire a lock?
* No: They are only invoked after all function calls using
them have finished

Be consistent in whether you disable interrupts or
whether you acquire a lock to protect a certain data
structure: mixing the two is dangerous and can lead
to deadlocks

11/21/13 2



Debugging kernel modules

Debugging kernel modules with GDB is
tricky—GDB needs to know both what the
symbols are (from the .ko file) and where in
the kernel they are located

We have the kernel object (.ko) file, but how
can we figure out where in the running
kernel the symbols are located?

* Answer: the kernel tells us!

11/21/13



Debugging kernel modules

After loading a kernel module in Qemu, look
under /sys/modules/ [module-

name] /sections/ to see a file for each of its
sections:

> cd /sys/module/ext2undelete/sections/
> 1ls —-A

.bss .1nit.text .smp locks .text
.exlt.text .note.gnu.build-i1d .strtab
~_mcount loc .gnu.linkonce.this module
.rodata .symtab

11/21/13



Debugging kernel modules

The contents of each file is the address

within the kernel of the corresponding
section:

> cat .text .rodata .bss
Oxffff£f£££a0000000
Oxffff£f£££fa0001030
Oxfffff£f£f£fa0002260

11/21/13



Debugging kernel modules

Next, connect GDB to your running Qemu instance using the directions
on the VM Info course page, then load the module file’s symbols:

(gdb) add-symbol-file 45lrepo/project3/ext2undelete.ko \
Oxffffffffa0000000 -s .rodata Oxffffffffa0001030 \
-s .bss Oxffffffffa0002260

add symbol table from file

"A51lrepo/project3/ext2undelete.ko" at

.text addr = Oxffffffffa0000000

.rodata addr = Oxffffffffa0001030

.bss addr = Oxffffffffa0002260

(y or n) y

Reading symbols from

451repo/project3/ext2undelete.ko...done.

11/21/13


http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#qemu

Debugging kernel modules

11/21/13

Now we’re set! Can examine symbols, set
breakpoints, etc. from the comfort of GDB

(Show demo here)

This material is also available as a tutorial on
the course website



http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#module_debug
http://www.cs.washington.edu/education/courses/cse451/13sp/vminfo.html#module_debug

11/21/13

Project 3 tips

How can we figure out which inodes have been
deleted?

First step: Check the inode bitmap

* The bits of the inode bitmap describe which inodes are
currently in use

* If the address of the inode bitmap is ib ptr, how can
we test if the nth inode is not in use?

Second step: Check whether the inode was actually
deleted

* What tells us that an inode was deleted as opposed to
simply never having been used?



Project 3 tips

As an aside, arch/arm/include/asm/bitops.h
defines a number of efficient bitwise
operators

When ext2 new inodein fs/ext2/ialloc.c
looks for the next available inode number, it
(indirectly) invokes the

find first zero bit le function, which
finds the index of the first zero bit for a little
endian integer of a given size

11/21/13



11/21/13

Project 3 tips

There are many scenarios to test to make
sure your undelete module is
working...check as many as you can!

* Calls to undelete read with a small buffer size
(for example, a single byte)

Should advance buffer read offset without
reading the next block

* File systems spanning multiple block groups
* File systems with a variety of block sizes

10



