
CSE 451: Operating Systems

Section 7

Data races, thread pools, project 2b

Debugging threaded programs

 printf is useful, but it takes time to execute—why is
this potentially a problem when writing
multithreaded programs?

 GDB is pthreads-aware and supports inspecting the
state of running threads
 See this site for a tutorial on interacting with threads

from GDB

 If your program is crashing and you don’t know why,
use ulimit –c unlimited to have all crashing
programs produce core dumps
 Then load the core in GDB with gdb binary core-file

11/7/13 2

http://sourceware.org/gdb/onlinedocs/gdb/Threads.html

Data races

A data race is when two threads read/write
the same data concurrently

The C standard does not make guarantees about
the state of data if there are concurrent
reads/writes of it

Solution: protect concurrent accesses to
data using a mutex

11/7/13 3

Detecting data races

Valgrind has a tool called helgrind for detecting
data races
 Usage: valgrind --tool=helgrind ./binary
 See the helgrind manual for more information

Beyond data races, helgrind and other tools will
check for problems such as:
 Exiting a thread that holds a mutex
 Acquiring locks in inconsistent orderings
 Waiting on a condition variable without having

acquired the corresponding mutex
 …and many others

11/7/13 4

http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

Thread pools

Thread pools provide the illusion of an
unlimited amount of parallel processing power,
despite using a small number of threads

11/7/13 5 *Diagram from Wikipedia

http://en.wikipedia.org/wiki/Thread_pool_pattern

Thread pools

Whenever there is a new task to run, a
thread from the pool processes it and then
fetches the next task from the queue

11/7/13 6 *Diagram from Wikipedia

http://en.wikipedia.org/wiki/Thread_pool_pattern

Thread pool implications

Thread pools only simulate an infinite
number of processing threads

Deadlocks can occur if running threads are
blocked waiting for a task that hasn’t started

 For example: launching both producers and
consumers from a shared thread pool (why?)

Thread pools save on the cost of spinning up
new threads—workers are recycled

11/7/13 7

sioux thread pool

typedef struct {

 queue request_queue;

 sthread_cond_t request_ready;

} thread_pool;

typedef struct {

 int next_conn;

} request;

// New request arrives:

// enqueue request, signal request_ready

// Worker threads:

// dequeue, run handle_request(request);

11/7/13 8

sioux thread pool problems

This sounds good, but what happens if the
request queue grows faster than threads can
process the requests?

Hint: it’s okay to have incoming connections wait
(and potentially time out) before you accept()
them if your server is overloaded

The OS enforces a limit on the number of
unhandled incoming connections for you—the
BACKLOG macro in sioux_run.c determines how
many

11/7/13 9

Thread pool performance

Threads can run on separate CPU cores, but
thread pool state is centralized

Taking a work item involves locking a shared
mutex, creating a central point of contention

 If work items are quick to process, the cost of
acquiring the mutex can outweigh the cost of
processing the work item!

 If we know approximately how long work items
take, how can we improve performance?

11/7/13 10

Thread pool performance

Partitioning: divide work items among
threads as they arrive
Can use a fixed scheme (simple but potentially

unbalanced) or a dynamic scheme (more
complex but better balanced) to distribute items

Work stealing: threads that finish processing
items in their queues steal work from other
threads’ queues
Work stealing comes up in all manner of

distributed settings

11/7/13 11

Project 2b: part 4

Make the sioux web server multithreaded

 Create a thread pool (preferrably in a separate
thread_pool.[c|h])

 Use the existing connection handling code in
cooperation with your thread pool

 Test using pthreads—we won’t test against your
sthreads implementation

 Apache Bench (ab) is a useful tool for measuring
webserver performance, more so than the provided
webclient tool

11/7/13 12

Project 2b: part 5

Add preemption to the sthreads library

One way to think about preemption safety:

Disable interrupts in “library” context

Use atomic locking in “application” context

Does locking and unlocking a mutex occur in
“library” context or “application” context?

11/7/13 13

How not to implement mutexes

sthread_user_mutex_lock(mutex)

 splx(HIGH); // disable interrupts

 if (mutex->held) {

 enqueue(mutex->queue, current_thread);

 schedule_next_thread();

 } else {

 mutex->held = true;

 }

 splx(LOW); // reenable interrupts

}

What’s the problem here?

11/7/13 14

How not to implement mutexes

sthread_user_mutex_lock(mutex) {

 while(

 atomic_test_and_set(

 &mutex->available)) { }

}

What’s the problem here?

11/7/13 15

How not to implement mutexes

sthread_user_mutex_lock(mutex) {

 while(

 atomic_test_and_set(

 &mutex->available)) {

 enqueue(mutex->queue, current_thread);

 schedule_next_thread();

 }

}

What’s the problem here? Hint: think about
preemption

11/7/13 16

How to implement mutexes

Need to lock around the critical sections in
the mutex functions themselves!
Your struct _sthread_mutex will likely need

another member for this

For hints, re-read lecture slides:
Module 7: Synchronization (slide 21 forward)

Module 8: Semaphores

Similar hints apply for condition variables

11/7/13 17

Project 2b: part 6

Writeup about webserver and thread library

Be thorough! Make use of graphs for
comparisons and provide commentary on
why the results are the way they are

As mentioned previously, the Apache Bench
(ab) tool might be useful here as well

11/7/13 18

Disk buffers

 Both the operating system and physical disks
themselves cache reads and writes

 The disk buffer is ~8-128MB on disk, while the page
cache is all unused RAM (on the order of gigabytes!)

Why bother with such a “low” amount on disk?
 Writes often come in bursts, so this allows for saturating

the speeds of both the I/O interface and the speed of
physical transfer to disk

 The OS doesn’t have to care about optimizing write
order for every vendor’s specific hardware

 Other thoughts?

11/7/13 19

Asynchronous IO

Two ways of performing concurrent IO:
Multithreaded synchronous operations (e.g. the

sioux webserver)

 Single-threaded asynchronous operations (e.g.
???)

How does asynchronous IO work?
Ask for IO to occur

Do some other work (potentially more IO)

Wait for IO to complete

11/7/13 20

Asynchronous IO

Open files/sockets/etc. with the O_ASYNC flag,
then use select() to wait until one or more file
descriptors will accept a read() or write()
without blocking
 General design: loop continuously, waiting until one

or more sources is ready for more processing

POSIX also provides a set of aio_* functions
(see man 7 aio) such as aio_read and aio_write
to perform asynchronous IO, but these are less
commonly used

11/7/13 21

Asynchronous IO

What are the advantages and disadvantages of
asynchronous IO versus synchronous IO?

How could asynchrous IO be applied to the
sioux webserver?

Asynchronous IO can be used for event-driven
programming

 Event callbacks (e.g. button presses) in Java’s AWT

 AJAX in JavaScript

11/7/13 22

Faking record access

What!? Ed said Unix filesystems don’t allow for
record access (module 15).

“We only get read(), write(),
seek(), etc().”

MMAP to the rescue!
 Map a file into memory.
 Cast pointers to your favorite struct and act as

though the file is an array of struct awesome.
 Or treat as linked list or your favorite data structure.
 Profit.

11/7/13 23

http://www.cs.washington.edu/education/courses/cse451/13sp/lectures/15-fs.pdf

