CSE 451: Operating Systems

Section 7/
Data races, thread pools, project 2b



Debugging threaded programs

11/7/13

printf IS useful, but it takes time to execute—why is
this potentially a problem when writing
multithreaded programs?

GDB is pthreads-aware and supports inspecting the
state of running threads

* See this site for a tutorial on interacting with threads
from GDB

If your program is crashing and you don’t know why,
use ulimit -c unlimited to have all crashing
programs produce core dumps

* Then load the core in GDB with gdb binary core-file


http://sourceware.org/gdb/onlinedocs/gdb/Threads.html

Data races

A data race is when two threads read/write
the same data concurrently

* The C standard does not make guarantees about
the state of data if there are concurrent
reads/writes of it

Solution: protect concurrent accesses to
data using a mutex

11/7/13



11/7/13

Detecting data races

Valgrind has a tool called helgrind for detecting
data races

* Usage: valgrind --tool=helgrind ./binary
* See the helgrind manual for more information

Beyond data races, helgrind and other tools will
check for problems such as:

* Exiting a thread that holds a mutex
* Acquiring locks in inconsistent orderings

* Waiting on a condition variable without having
acquired the corresponding mutex

* ...and many others


http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

Thread pools

Thread pools provide the illusion of an
unlimited amount of parallel processing power,
despite using a small number of threads

Task Queue

-~ @@© — O j

T’ [OlO][O][[O][O]

Completed Tasks |
~([(@@@@@@@@© «—0O

11/7/13 *Diagram from Wikipedia



http://en.wikipedia.org/wiki/Thread_pool_pattern

Thread pools

Whenever there is a new task to run, a
thread from the pool processes it and then

fetches the next task from the queue
Task Queue

-~ @@© — O j

T’ [OlO][O][[O][O]

Completed Tasks |
~([(@@@@@@@@© «—0O

11/7/13 *Diagram from Wikipedia



http://en.wikipedia.org/wiki/Thread_pool_pattern

11/7/13

Thread pool implications

Thread pools only simulate an infinite
number of processing threads

* Deadlocks can occur if running threads are
blocked waiting for a task that hasn’t started

* For example: launching both producers and
consumers from a shared thread pool (why?)

Thread pools save on the cost of spinning up
new threads—workers are recycled



sioux thread pool

typedef struct {

queue request queue;

sthread cond t request ready;
} thread pool;

typedef struct {
int next conn;
} request;

// New request arrives:

// enqueue request, signal request ready
// Worker threads:

// dequeue, run handle request (request);

11/7/13



11/7/13

sioux thread pool problems

This sounds good, but what happens if the

request queue grows faster than threads can
process the requests?

* Hint: it’s okay to have incoming connections wait
(and potentially time out) before you accept ()
them if your server is overloaded

* The OS enforces a limit on the number of

unhandled incoming connections for you—the

BACKLOG macro in sioux_run.c determines how
many



Thread pool performance

Threads can run on separate CPU cores, but
thread pool state is centralized

Taking a work item involves locking a shared
mutex, creating a central point of contention

* If work items are quick to process, the cost of

acquiring the mutex can outweigh the cost of
processing the work item!

If we know approximately how long work items
take, how can we improve performance?

11/7/13 10



11/7/13

Thread pool performance

Partitioning: divide work items among
threads as they arrive

* Can use a fixed scheme (simple but potentially
unbalanced) or a dynamic scheme (more
complex but better balanced) to distribute items

Work stealing: threads that finish processing
items in their queues steal work from other

threads’ queues

* Work stealing comes up in all manner of
distributed settings

11



11/7/13

Project 2b: part 4

Make the sioux web server multithreaded

Create a thread pool (preferrably in a separate
thread _pool.[c]|h])

Use the existing connection handling code in
cooperation with your thread pool

Test using pthreads—we won’t test against your
sthreads implementation

Apache Bench (ab) is a useful tool for measuring
webserver performance, more so than the provided
webclient tool

12



11/7/13

Project 2b: part 5

Add preemption to the sthreads library

One way to think about preemption safety:
* Disable interrupts in “library” context
* Use atomic locking in “application” context

Does locking and unlocking a mutex occur in
“library” context or “application” context?

13



How not to implement mutexes

sthread user mutex lock (mutex)
splx (HIGH); // disable interrupts
1f (mutex->held) {

enqueue (mutex->queue, current thread);
schedule next thread();
} else {

mutex—->held = true;

}
splx (LOW); // reenable interrupts

What’s the problem here?

11/7/13 14



How not to implement mutexes

sthread user mutex lock (mutex)
while (
atomic test and set (
gmutex—->available)) { }

What'’s the problem here?

11/7/13 15



How not to implement mutexes

sthread user mutex lock (mutex)
while (
atomic test and set (
gmutex—->availlable)) {
enqueue (mutex->queue, current thread);
schedule next thread();

What's the problem here? Hint: think about
preemption

11/7/13 16



How to implement mutexes

* Need to lock around the critical sections in
the mutex functions themselves!

*kYour struct sthread mutex Wwill likely need
another member for this

* For hints, re-read lecture slides:

* Modu
* Modu

Similar

11/7/13

e 7: Synchronization (slide 21 forward)
e 8: Semaphores

nints apply for condition variables

17



11/7/13

Project 2b: part 6

Writeup about webserver and thread library

Be thorough! Make use of graphs for
comparisons and provide commentary on
why the results are the way they are

As mentioned previously, the Apache Bench
(ab) tool might be useful here as well

18



11/7/13

Disk buffers

Both the operating system and physical disks
themselves cache reads and writes

The disk buffer is ¥8-128MB on disk, while the page
cache is all unused RAM (on the order of gigabytes!)

Why bother with such a “low” amount on disk?

* Writes often come in bursts, so this allows for saturating
the speeds of both the I/O interface and the speed of
physical transfer to disk

* The OS doesn’t have to care about optimizing write
order for every vendor’s specific hardware

* Other thoughts?

19



11/7/13

Asynchronous IO

Two ways of performing concurrent |O:

* Multithreaded synchronous operations (e.g. the
sioux webserver)

* Single-threaded asynchronous operations (e.g.
??7?)

How does asynchronous IO work?

* Ask for 10 to occur

* Do some other work (potentially more 10)
* Wait for IO to complete

20



11/7/13

Asynchronous IO

Open files/sockets/etc. with the o async flag,
then use select () to wait until one or more file
descriptors will accept a read () or write ()
without blocking

* General design: loop continuously, waiting until one
or more sources is ready for more processing

POSIX also provides a set of aic * functions
(see man 7/ aio) such as alio read and alo write
to perform asynchronous IO, but these are less
commonly used

21



11/7/13

Asynchronous IO

What are the advantages and disadvantages of
asynchronous IO versus synchronous 107

How could asynchrous IO be applied to the
sioux webserver?

Asynchronous IO can be used for event-driven
programming

* Event callbacks (e.g. button presses) in Java’s AWT
* AJAX in JavaScript

22



11/7/13

Faking record access

What!? Ed said Unix filesystems don’t allow for
record access (module 15).

“We only get read (), write(),
seek (), etc ().

MMAP to the rescue!

* Map a file into memory.

* Cast pointers to your favorite struct and act as
though the file is an array of struct awesome.

* Or treat as linked list or your favorite data structure.

* Profit.

23


http://www.cs.washington.edu/education/courses/cse451/13sp/lectures/15-fs.pdf

