
CSE 451: Operating Systems

Section 7

Data races, thread pools, project 2b

Debugging threaded programs

 printf is useful, but it takes time to execute—why is
this potentially a problem when writing
multithreaded programs?

 GDB is pthreads-aware and supports inspecting the
state of running threads
 See this site for a tutorial on interacting with threads

from GDB

 If your program is crashing and you don’t know why,
use ulimit –c unlimited to have all crashing
programs produce core dumps
 Then load the core in GDB with gdb binary core-file

11/7/13 2

http://sourceware.org/gdb/onlinedocs/gdb/Threads.html

Data races

A data race is when two threads read/write
the same data concurrently

The C standard does not make guarantees about
the state of data if there are concurrent
reads/writes of it

Solution: protect concurrent accesses to
data using a mutex

11/7/13 3

Detecting data races

Valgrind has a tool called helgrind for detecting
data races
 Usage: valgrind --tool=helgrind ./binary
 See the helgrind manual for more information

Beyond data races, helgrind and other tools will
check for problems such as:
 Exiting a thread that holds a mutex
 Acquiring locks in inconsistent orderings
 Waiting on a condition variable without having

acquired the corresponding mutex
 …and many others

11/7/13 4

http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html
http://valgrind.org/docs/manual/hg-manual.html

Thread pools

Thread pools provide the illusion of an
unlimited amount of parallel processing power,
despite using a small number of threads

11/7/13 5 *Diagram from Wikipedia

http://en.wikipedia.org/wiki/Thread_pool_pattern

Thread pools

Whenever there is a new task to run, a
thread from the pool processes it and then
fetches the next task from the queue

11/7/13 6 *Diagram from Wikipedia

http://en.wikipedia.org/wiki/Thread_pool_pattern

Thread pool implications

Thread pools only simulate an infinite
number of processing threads

Deadlocks can occur if running threads are
blocked waiting for a task that hasn’t started

 For example: launching both producers and
consumers from a shared thread pool (why?)

Thread pools save on the cost of spinning up
new threads—workers are recycled

11/7/13 7

sioux thread pool

typedef struct {

 queue request_queue;

 sthread_cond_t request_ready;

} thread_pool;

typedef struct {

 int next_conn;

} request;

// New request arrives:

// enqueue request, signal request_ready

// Worker threads:

// dequeue, run handle_request(request);

11/7/13 8

sioux thread pool problems

This sounds good, but what happens if the
request queue grows faster than threads can
process the requests?

Hint: it’s okay to have incoming connections wait
(and potentially time out) before you accept()
them if your server is overloaded

The OS enforces a limit on the number of
unhandled incoming connections for you—the
BACKLOG macro in sioux_run.c determines how
many

11/7/13 9

Thread pool performance

Threads can run on separate CPU cores, but
thread pool state is centralized

Taking a work item involves locking a shared
mutex, creating a central point of contention

 If work items are quick to process, the cost of
acquiring the mutex can outweigh the cost of
processing the work item!

 If we know approximately how long work items
take, how can we improve performance?

11/7/13 10

Thread pool performance

Partitioning: divide work items among
threads as they arrive
Can use a fixed scheme (simple but potentially

unbalanced) or a dynamic scheme (more
complex but better balanced) to distribute items

Work stealing: threads that finish processing
items in their queues steal work from other
threads’ queues
Work stealing comes up in all manner of

distributed settings

11/7/13 11

Project 2b: part 4

Make the sioux web server multithreaded

 Create a thread pool (preferrably in a separate
thread_pool.[c|h])

 Use the existing connection handling code in
cooperation with your thread pool

 Test using pthreads—we won’t test against your
sthreads implementation

 Apache Bench (ab) is a useful tool for measuring
webserver performance, more so than the provided
webclient tool

11/7/13 12

Project 2b: part 5

Add preemption to the sthreads library

One way to think about preemption safety:

Disable interrupts in “library” context

Use atomic locking in “application” context

Does locking and unlocking a mutex occur in
“library” context or “application” context?

11/7/13 13

How not to implement mutexes

sthread_user_mutex_lock(mutex)

 splx(HIGH); // disable interrupts

 if (mutex->held) {

 enqueue(mutex->queue, current_thread);

 schedule_next_thread();

 } else {

 mutex->held = true;

 }

 splx(LOW); // reenable interrupts

}

What’s the problem here?

11/7/13 14

How not to implement mutexes

sthread_user_mutex_lock(mutex) {

 while(

 atomic_test_and_set(

 &mutex->available)) { }

}

What’s the problem here?

11/7/13 15

How not to implement mutexes

sthread_user_mutex_lock(mutex) {

 while(

 atomic_test_and_set(

 &mutex->available)) {

 enqueue(mutex->queue, current_thread);

 schedule_next_thread();

 }

}

What’s the problem here? Hint: think about
preemption

11/7/13 16

How to implement mutexes

Need to lock around the critical sections in
the mutex functions themselves!
Your struct _sthread_mutex will likely need

another member for this

For hints, re-read lecture slides:
Module 7: Synchronization (slide 21 forward)

Module 8: Semaphores

Similar hints apply for condition variables

11/7/13 17

Project 2b: part 6

Writeup about webserver and thread library

Be thorough! Make use of graphs for
comparisons and provide commentary on
why the results are the way they are

As mentioned previously, the Apache Bench
(ab) tool might be useful here as well

11/7/13 18

Disk buffers

 Both the operating system and physical disks
themselves cache reads and writes

 The disk buffer is ~8-128MB on disk, while the page
cache is all unused RAM (on the order of gigabytes!)

Why bother with such a “low” amount on disk?
 Writes often come in bursts, so this allows for saturating

the speeds of both the I/O interface and the speed of
physical transfer to disk

 The OS doesn’t have to care about optimizing write
order for every vendor’s specific hardware

 Other thoughts?

11/7/13 19

Asynchronous IO

Two ways of performing concurrent IO:
Multithreaded synchronous operations (e.g. the

sioux webserver)

 Single-threaded asynchronous operations (e.g.
???)

How does asynchronous IO work?
Ask for IO to occur

Do some other work (potentially more IO)

Wait for IO to complete

11/7/13 20

Asynchronous IO

Open files/sockets/etc. with the O_ASYNC flag,
then use select() to wait until one or more file
descriptors will accept a read() or write()
without blocking
 General design: loop continuously, waiting until one

or more sources is ready for more processing

POSIX also provides a set of aio_* functions
(see man 7 aio) such as aio_read and aio_write
to perform asynchronous IO, but these are less
commonly used

11/7/13 21

Asynchronous IO

What are the advantages and disadvantages of
asynchronous IO versus synchronous IO?

How could asynchrous IO be applied to the
sioux webserver?

Asynchronous IO can be used for event-driven
programming

 Event callbacks (e.g. button presses) in Java’s AWT

 AJAX in JavaScript

11/7/13 22

Faking record access

What!? Ed said Unix filesystems don’t allow for
record access (module 15).

“We only get read(), write(),
seek(), etc().”

MMAP to the rescue!
 Map a file into memory.
 Cast pointers to your favorite struct and act as

though the file is an array of struct awesome.
 Or treat as linked list or your favorite data structure.
 Profit.

11/7/13 23

http://www.cs.washington.edu/education/courses/cse451/13sp/lectures/15-fs.pdf

