
CSE 451: Operating Systems

Section 6

Project 2b

Midterm

Scores will be on Catalyst and midterms
were handed back on Friday(?) in class

Talk to Ed, Sean, or Jeff about grading
questions

Office hours are the best time for this

10/31/12 2

Project 2a learnings

What sort of interesting behavior have you
seen in experimenting with test-burgers?

What has been the hardest part of the
library to implement?

10/31/12 3

Project 2b

Parts 4, 5 and 6 of project 2

Due at 11:59pm, Sunday November 17

10/31/12 4

Part 4: web server

web/sioux.c – singlethreaded web server

Read in command line args, run the web server
loop

5 10/31/12

Part 4: web server

web/sioux_run.c – the web server loop

Open a socket to listen for connections
(listen(2))

Wait for a connection (accept(2))

Handle connection:

 Parse the HTTP request

 Find and read the requested file

 Send the file back

 Close the connection

6 10/31/12

Thread pools

Image from http://en.wikipedia.org/wiki/Thread_pool_pattern
More info: http://www.ibm.com/developerworks/java/library/j-jtp0730.html

7 10/31/12

http://en.wikipedia.org/wiki/Thread_pool_pattern
http://www.ibm.com/developerworks/java/library/j-jtp0730.html
http://www.ibm.com/developerworks/java/library/j-jtp0730.html
http://www.ibm.com/developerworks/java/library/j-jtp0730.html

What you need to do

Make the web server multithreaded

Create a thread pool

 Suggestion: create separate thread_pool.h,
thread_pool.c

Wait for a connection

 Find an available thread to handle the request

 Request waits (where?) if all threads busy

Once the request is handed to a thread, it uses
the same processing code as before

 See web_runloop() in sioux_run.c
8 10/31/12

Hints

Each connection is identified by a socket file
descriptor returned by accept(2)

 File descriptor (fd) is just an int

Threads should sleep while waiting for a
new connection

Condition variables are perfect for this

9 10/31/12

Hints

Don’t forget to protect any global variables

Use mutexes and CVs from part 2

Develop and test with pthreads initially

Use only the sthread.h interface

Mostly modify sioux_run.c, and your own
files

10 10/31/12

Part 5: preemption

What we give you (see sthread_preempt.c):

Timer interrupts

 Function to turn interrupts on and off

 Synchronization primitives
atomic_test_and_set, atomic_clear

 x86/amd64 architectures only

11 10/31/12

Part 5: preemption

What you have to do:

Add code that will run every time a timer
interrupt is generated

Add synchronization to your part 1 and part 2
implementations so that everything works with
preemptive thread scheduling

Can be done independently of part 4

12 10/31/12

sthread_preempt.h

/* Start preemption - func will be called

 * every period microseconds

 */

void sthread_preemption_init

 (sthread_ctx_start_func_t func,

 int period);

/* Turns interrupts on (LOW) or off (HIGH)

 * Returns the last state of the

 * interrupts

 */

int splx(int splval);

13 10/31/12

sthread_preempt.h

/* atomic_test_and_set - using the native

 * compare and exchange on the Intel x86.

 *

 * Example usage:

 * lock_t lock;

 * while(atomic_test_and_set(&lock))

 * {} // spin

 * _critical section_

 * atomic_clear(&lock);

 */

int atomic_test_and_set(lock_t *l);

void atomic_clear(lock_t *l);

14 10/31/12

Signals

Used to notify processes of events
asynchronously

Every process has a signal handler table

When a signal is sent to a process, OS
interrupts that process and calls the handler
registered for that signal

15 10/31/12

Signal manipulation

A process can:

Override the default signal handlers using
sigaction(2)

Block / unblock signals with sigprocmask(2)

 Send a signal via kill(2)

Signals:
 SIGINT (CTRL-C), SIGQUIT (CTRL-\),

SIGKILL, SIGFPE, SIGALRM, SIGSEGV…

16 10/31/12

What you need to do

Add a call to sthread_preemption_init() as
the last line in your sthread_user_init()
function

 sthread_preemption_init() takes a pointer to a
function that will be called on each timer
interrupt

 This function should cause thread scheduler to switch
to a different thread!

17 10/31/12

What you need to do

Add synchronization to critical sections in
thread management routines

Think: what would happen if the code was
interrupted at this point?

 Would it resume later with no problems?

 Could the interrupting code mess with any variables
that this code is currently using?

Don’t have to worry about simplethreads code
that you didn’t write (i.e. sthread_switch):
already done for you

18 10/31/12

What you need to do

Before doing a context switch, interrupts
should be disabled to avoid preemption.
How can they be reenabled after the switch?

Hint: Think of the possible execution paths

19 10/31/12

Interrupt disabling

Non-thread-safe

/* returns next thread

 * on the ready queue */

sthread_t

sthread_user_next() {

 sthread_t next;

 next = sthread_dequeue

(ready_q);

 if (next == NULL)

 exit(0);

 return next;

}

Thread-safe

sthread_t

sthread_user_next() {

 sthread_t next;

 int old = splx(HIGH);

 next = sthread_dequeue

 (ready_q);

 splx(old);

 if (next == NULL)

 exit(0);

 return next;

}

20 10/31/12

Interrupt disabling

Thread-safe

sthread_t

sthread_user_next() {

 sthread_t next;

 int old = splx(HIGH);

 next = sthread_dequeue

 (ready_q);

 splx(old);

 if (next == NULL)

 exit(0);

 return next;

}

21 10/31/12

Why do we call
splx(old) after
dequeuing instead of
just splx(LOW)?

Atomic locking

So what is atomic_test_and_set()
for?

Primarily to implement higher-level
synchronization primitives (mutexes, CVs)

One way to think about preemption-safe
thread library:

Disable/enable interrupts in “library” context

Use atomic locking in “application” context

22 10/31/12

Race conditions and testing

How can you test your preemption code?

How can you know that you’ve found all of
the critical sections?

23 10/31/12

Part 6: report

Covers all parts of project 2

Discuss your design decisions. In detail. PLEASE!

Performance evaluation:

 Measure throughput and response time of your web
server using web benchmarking tool

 Vary the number of threads and number of “clients”

 Present results in graphical form

 Explain results: expected or not?

24 10/31/12

Project 2 questions?

10/31/12 25

