
CSE 451: Operating Systems

Section 4

Scheduling, Project 2 Intro, Threads

Priority Inversion

A problem that arises when tasks (e.g.
threads) have priorities and shared resource
conflicts

Typically involves tasks that operate
periodically

You won’t have to worry about this in
Project 2.

10/21/10 2

Priority Inversion

 Say we have 3 tasks where
priority(J1) > priority(J2) > priority(J3)

 J1 and J3 each need exclusive access to the same
shared resource

When could there be problem?

10/21/10 3

J1

J2

J3

Normal execution

Critical region

Priority Inversion

 A higher priority task can interrupt a lower priority one.

 Unbounded time of priority inversion, if J3 is interrupted
by tasks with priority between J1 and J3 during its critical
region.

10/21/10 4

J1

J2

J3

Normal execution Critical region

J1 blocked

The Mars Pathfinder problem

“But a few days into the
mission, not long after
Pathfinder started gathering
meteorological data, the
spacecraft began
experiencing total system
resets, each resulting in
losses of data. The press
reported these failures in
terms such as ‘software
glitches’ and ‘the computer
was trying to do too many
things at once’”

10/21/10 5

What happened?

Relevant components:
 Information Bus (IB)

– a buffer for exchanging data between tasks
 Meteorological data gathering task (M)

– infrequent, low priority, locks the IB
 Communication task (C)

– medium priority, doesn’t use the IB
 Bus management (B)

– frequent, high priority, locks the IB
 Watchdog timer (W)

– Resets the system if B is not activated for a certain
amount of time

10/21/10 6

Pathfinder woes

Oh noes! Is that $280M down the drain?

What can be done?

10/21/10 7

B

C

M

Normal execution Information Bus in use

Bus management blocked

Reset by watchdog timer!

A Solution to priority inversion

Any thoughts?

10/21/10 8

Priority Inheritance

If a task J1 blocks because some other task
J3 with lower priority owns the requested
resource, the J3 temporarily inherits the
priority of J1

J3 loses its elevated priority when it releases
the resource

Rule: Tasks always inherit the highest
priority of other tasks they are blocking

10/21/10 9

Mars Pathfinder solution

The Mars Pathfinder uses a real-time OS
called VxWorks

VxWorks has a flag to set priority inheritance
“on”

How do you think this flag was set when
Pathfinder was launched?

10/21/10 10

Priority Inheritance on Mars

Luckily, that flag in VxWorks could be set
remotely

10/21/10 11

B

C

M

Normal execution Information Bus in use

B blocked

NO reset by watchdog timer!

Not all roses yet

Priority inheritance solves the biggest
problem, but 2 more remain:
Deadlock

Chained Blocking

They are solved by the Priority Ceiling
Protocol extension

You can read about this on your own
because now it is time for…

 10/21/10 12

Project 1

Congratulations, you’re all kernel hackers
now!

Any Final Questions?

We’re going to give you a break and have
you do some userspace work 

4/19/12 13

Project 2: user-level threads

Part A: due Sunday, Nov 3 at 11:59pm
 Implement part of a user thread library

Add synchronization primitives

 Solve a synchronization problem

Part B: due Sunday, Nov 17 at 11:59pm
 Implement a multithreaded web server

Add preemption

Get some results and write a (small) report

14 4/19/12

Project 2 notes

Start EARLY!

 It’s loooooooong

Read the assignment carefully

Read it again

Understand the skeleton code

Use the same groups as for project 1

15 4/19/12

Project 2 tips

Understand what the provided code does
for you

Division of work

Part 3 can be completed without parts 1 and 2

More tools

 gdb

 (Or ddd if you’re not a fan of CLIs)

16 4/19/12

17

Simplethreads

We give you:
 Skeleton functions for thread interface

Machine-specific code (x86, i386)
 Support for creating new stacks

 Support for saving regs/switching stacks

A queue data structure (why?)

Very simple test programs
 You should write more, and include them in the turnin

A single-threaded web server

4/19/12

18

Simplethreads code structure

include/sthread.h

Other apps Web server

(web/sioux.c)

test/*.c

lib/sthread_user.h

lib/sthread_user.c

lib/sthread_ctx.c

lib/sthread_ctx.h

You write this

sthread_switch_i386.h

sthread_switch_powerpc.h

lib/sthread_switch.S

lib/sthread_queue.c

lib/sthread_queue.h

lib/sthread_preempt.c

lib/sthread_preempt.h

4/19/12

19

Pthreads

Pthreads (POSIX threads) is a preemptive,
kernel-level thread library

Simplethreads is similar to Pthreads

Project 2: compare your implementation
against Pthreads

 ./configure --with-pthreads

4/19/12

20

Thread operations

What functions do we need for a userspace
thread library?

4/19/12

21

Simplethreads API

void sthread_init()

 Initialize the whole system
sthread_t sthread_create(func start_func,

 void *arg)

 Create a new thread and make it runnable
void sthread_yield()

 Give up the CPU
void sthread_exit(void *ret)

 Exit current thread
void* sthread_join(sthread_t t)

 Wait for specified thread to exit

4/19/12

22

Simplethreads internals

Structure of the TCB:
 struct _sthread {

 sthread_ctx_t *saved_ctx;

 /**

 * Add your fields to the thread

 * data structure here.

 */

 };

4/19/12

23

Sample multithreaded program

 (this slide and next – see test-create.c)

void *thread_start(void *arg) {

 if (arg) {

 printf(“in thread_start, arg = %p\n”,

 arg);

 }

 return 0;

}

...

4/19/12

24

Sample multithreaded program

int main(int argc, char *argv[]) {

 sthread_init();

 for(i = 0; i < 3; i++) {

 if (sthread_create(thread_start,

 (void *)&i) == NULL) {

 printf("sthread_create failed\n");

 exit(1);

 }

 }

 // needs to be called multiple times

 sthread_yield();

 printf("back in main\n");

 return 0;

}
4/19/12

25

Managing contexts

(Provided for you in project 2)

Thread context = thread stack + stack
pointer

sthread_new_ctx(func_to_run)

 creates a new thread context that can be switched to
sthread_free_ctx(some_old_ctx)

 Deletes the supplied context
sthread_switch(oldctx, newctx)

 Puts current context into oldctx

 Takes newctx and makes it current

4/19/12

26

How sthread_switch works

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Want to switch to thread 2…

Thread 2

registers

Thread 1 regs
4/19/12

27

Push old context

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

28

Save old stack pointer

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 running Thread 2 ready

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

29

Change stack pointers

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 2

registers

Thread 1

registers

Thread 1 regs
4/19/12

30

Pop off new context

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers

Thread 2 regs
4/19/12

31

Done; return

Xsthread_switch:

 (push all regs)

 movq %rsp,(%rax)

 movq %rdx,%rsp

 (pop all regs)

 ret

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

Thread 1 ready Thread 2 running

Thread 1

registers  What got switched?

 RSP

 PC (how?)

 Other registers

Thread 2 regs
4/19/12

Adjusting the PC

Thread 1 TCB
 … SP

Thread 2 TCB
 … SP

RSP

CPU

 Thread 2 (running):

sthread_switch(t2,...);

0x800: printf(“test 2”);

Thread 1

registers

 ret pops off the new

return address!

ra=0x800

 PC

 Thread 1 (stopped):

sthread_switch(t1,t2);

0x400: printf(“test 1”);

ra=0x400

32

33

Thread joining

With Pthreads (and Sthreads):

Master thread calls join on worker thread

 Join blocks until worker thread exits.

 Join returns the return value of the worker
thread.

4/19/12

34

The need for synchronization

Thread safety:

An application's ability to execute multiple
threads simultaneously without "clobbering"
shared data or creating "race" conditions

4/19/12

35

Synchronization primitives:

mutexes
sthread_mutex_t sthread_mutex_init()

void sthread_mutex_free(sthread_mutex_t lock)

void sthread_mutex_lock(sthread_mutex_t lock)

 When returns, thread is guaranteed to acquire lock
void sthread_mutex_unlock(

 sthread_mutex_t lock)

4/19/12

36

Synchronization primitives:

condition variables
sthread_cond_t sthread_cond_init()

void sthread_cond_free(sthread_cond_t cond)

void sthread_cond_signal(sthread_cond_t cond)

 Wake-up one waiting thread, if any
void sthread_cond_broadcast(

 sthread_cond_t cond)

 Wake-up all waiting threads, if any
void sthread_cond_wait(sthread_cond_t cond,

 sthread_mutex_t lock)

 Wait for given condition variable

 Returning thread is guaranteed to hold the lock

4/19/12

37

Things to think about

How do you create a thread?
How do you pass arguments to the thread’s start

function?
 Function pointer passed to sthread_new_ctx() doesn’t

take any arguments

How do you deal with the initial (main)
thread?

How do you block a thread?

4/19/12

38

Things to think about

When and how do you reclaim resources for
a terminated thread?
Can a thread free its stack itself?

Where does sthread_switch return?

Who and when should call sthread_switch?

What should be in struct _sthread_mutex,
struct _sthread_cond?

4/19/12

39

Things to think about

Working with synchronization: When does it
make sense to disable interrupts?
Which actions are atomic at the application level

versus at the thread level?

When using forkbomb, run “ulimit -Su 64” to
limit the number of processes/threads
Allows you to log in from another session even if

you hit the above limit

Add it to your .bash_profile so it happens
automatically

4/19/12

Final Thoughts

Want to learn about real-time scheduling?
Take CSE466

40 4/19/12

