
CSE 451: Operating Systems

Section 3

Memory allocation, system calls,
Makefiles

Userspace memory allocation

In userspace C programs, malloc() and

calloc() allocate memory on the heap and

free() frees it

 libc maintains a free list in the data segment to

facilitate memory allocation

When a userspace process attempts to allocate

memory and libc has none to give it, libc

increases the size of the data segment via

sbrk() (see man 2 sbrk)
4/18/13

Kernel memory allocation

 In the kernel, there are some different use cases

and considerations:
 Some modules allocate and free memory frequently,

whereas others hold memory for long periods of

time

 If the kernel blocks or sleeps when allocating

memory, the performance of other processes will be

impacted

What happens if the kernel attempts to read

uninitialized memory? Unallocated memory?

4/18/13

Kernel memory allocation

 kmalloc(): Standard method of allocating

memory within the kernel
 Flags parameter allows caller to specify who will be

using the memory (userspace or kernel) and whether

the call should be allowed to sleep

 vmalloc(): Allocates large blocks of virtually

contiguous memory
 Not many use cases require it and furthermore Linus

(a.k.a. the kernel god) disapproves

 Slower than kmalloc()

4/18/13

Address space mapping

 Parts of the kernel are mapped into the address

space of userspace processes for faster access

 There are special functions for copying memory

between userspace and kernel space—why is this?

4/18/13

Kernel memory safety

 copy_from_user()

Copy memory from userspace to kernel space

Why is there a special function for this?

 copy_to_user()

Copy memory from kernel space to userspace

 access_ok()

 Check if access to a particular userspace

memory address of a given size is okay

 How would you implement this?

4/18/13

Library calls versus system calls

Which of the following map to system calls

and which execute purely in userspace?
 strlen(), execvp(), fork(), printf(), clone(),

open(), atoi(), exit()

 unistd.h (generally found under

/usr/include) contains the declarations of

many system calls
Other library functions rely directly or indirectly

on system calls defined in this header

4/18/13

Adding a system call

The good part: how do we actually add a system
call to the kernel in the version (3.8.3) that we
are using?
 Let’s look at a semi-recent patch to the kernel as an

example

Files to modify/add:
 arch/x86/syscalls/syscall_64.tbl

 include/linux/syscalls.h

 kernel/sys_ni.c

 kernel/Makefile

 write: kernel/[your_file].c

4/18/13

https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=34e1169d996ab148490c01b65b4ee371cf8ffba2

Adding a system call

Remember our demo: a simple system call

that uses printk() to print a value and

returns the value as its exit code

 printk()s are written to /var/log/messages

and can be printed to the console with the

dmesg command

Useful for debugging!

4/18/13

Invoking a system call

Use the syscall() function from userspace to
invoke system calls “directly”

#include <stdio.h> // for printf()

#include <stdlib.h> // for atoi()

#include <unistd.h> // for syscall()

int main(int argc, char* argv[]) {

 if (argc != 2) {

 fprintf(stderr, "Usage: %s value\n", argv[0]);

 return 1;

 }

 int syscall_number = 314; // number of the newly-added syscall

 int value = atoi(argv[1]);

 int ret = syscall(syscall_number, value);

 printf("Return value is %d\n", ret);

 return 0;

}

4/18/13

Beyond fsh.c

What is bash doing when you run a process
in the background? How does that differ
from fsh?

How does bash kill its children when it
quits?

How does it “disown” its children so they
aren’t killed when it quits? (see nohup and
disown)

4/18/13

Uses of fork

When can you imagine using fork that’s not as
a shell?

Long ago the internet super-service daemon
(inetd) sat there waiting for connections on all
ports, and started up the appropriate server on
demand (this saved on precious memory)

Android runs a Linux kernel. It keeps a “warm”
Dalvik VM image that forks to start your app,
avoiding the startup cost of a full Java VM

4/18/13

Signals and ps

 You can send arbitrary signals to your processes with
kill, not just SIGKILL.

 Add signal handlers with signal() to respond to them.

 ps tricks:
 ps -faux – show all processes as a tree, see who

spawned whom

 ps -melf – show all the threads that belong to a
process

 Hopefully this order of options is easy to
remember…faux and melf.

4/18/13

Makefiles

Makefiles can simplify the development
process for the userspace parts of project
1—be sure to use them effectively!

Some advanced functionality: patsubst and
suffix-based rules

4/18/13

Makefiles

 patsubst(a, b, c): replace occurrences of a in c
with b

 Special macros:
 $@: Name of Makefile target

 $<: Name of left-most dependency of Makefile target

 $^: Names of all Makefile target dependencies

 .d files: GCC is capable of scanning source files and
identifying their dependencies. This means
automatic recompilation when dependent files
change without even naming them in rules :)

4/18/13

Sample Makefile

NODEPS=clean
CC=gcc
CFLAGS=-std=gnu99 -g -Wall -O0
SRCS=$(shell find . -maxdepth 1 -name "*.c")
DEPFILES=$(patsubst %.c, %.d, $(SRCS))
OBJS=$(patsubst %.c, %.o, $(SRCS))

example: $(OBJS)
 $(CC) $(CFLAGS) -o $@ $(OBJS)

%.o: %.c %.d
 $(CC) $(CFLAGS) -o $@ -c $<

%.d: %.c
 $(CC) -MM -MT '$(patsubst %.c, %.o, $<)' $< -MF $@

clean:
 rm -f $(OBJS) $(PROGRAMS) $(DEPFILES)

Don't generate dependencies for all rules
ifeq (0, $(words $(findstring $(MAKECMDGOALS), $(NODEPS))))
 -include $(DEPFILES)
endif

4/18/13

Sample Makefile

Any .c files in the current directory will be built

automatically and linked into the example

executable

 If one of the .c files depends on a .h file that

changes, the rules in its .d file will cause it to be

rebuilt when make is next invoked

Project 1 has fairly simple requirements, but

becoming more familiar with Makefiles will

prove a boon to you in the future

4/18/13

More project 1 advice

 Be wary of race conditions in the kernel code that
you write
 What happens if two processes update the count stored

in a task struct at the same time?
 Use atomics in include/asm-generic/atomic.h or

cmpxchg in include/asm-generic/cmpxchg.h
 If you use cmpxchg, you’ll need to call it from a loop (why?)

 Don’t forget to check that access to a userspace
buffer is okay before attempting to read from it or
write to it
 As a test, try passing a variety of valid and invalid

userspace and kernel addresses to your system call

4/18/13

More project 1 advice

Implement the “.” command for the shell
early on so you can have some automated
test cases

Make sure to test a variety of bad inputs to
the shell and verify that none of them cause
it to crash or behave unexpectedly

4/18/13

More project 1 advice

Use the strace command to see if your system
call counts are reasonable

For example, we can check how many times the
echo command calls open():

$ strace echo "hi" 2>&1 | grep open

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3

open("/lib64/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

open("/usr/lib/locale/locale-archive",

O_RDONLY|O_CLOEXEC) = 3

4/18/13

