Section 2

Interrupts, system calls, and project 1

Interrupts

Interrupt

* Hardware interrupts caused by devices sighaling CPU

Exception

* Unintentional software interrupt

* Ex: divide-by-zero, general protection fault,
breakpoints

* Transfers control to Exception Handler fn

Trap (software interrupt)
* Intentional software interrupt

* Controlled method of entering kernel mode
* Performed via system calls

Interrupt handling

Execution of current process halts

CPU switches from user mode to kernel mode, saving
process state (registers, stack pointer, program counter)

* Context switches: rebuilding a car’s transmission at 60mph

* Pipelining makes this even more complex

CPU looks up interrupt handler in table and executes it

When the interrupt handler finishes, the CPU restores
the process state, switches back to user mode, and
resumes execution

Interrupt handling

What happens if there is another interrupt
during the execution of the interrupt
handler?

>} Race conditions

* The kernel disables interrupts before entering
some handler routines (FLIH vs. SLIH)

What happens when an interrupt arrives
and interrupts are disabled?

* The kernel queues interrupts for later processing

System calls

Provide userspace applications with
controlled access to OS services

Requires special hardware support on the
CPU to detect a certain system call
instruction and trap to the kernel

x86 uses the INT X instruction, X in [0,255]

System call control flow

User application calls a user-level library routine
(gettimeofday (), read (), exec (), etc.)

Invokes system call through stub, which specifies the
system call number. From unistd. h:

#define NR getpid 172

___SYSCALL(NR getpid, sys getpid)

This generally causes an interrupt, trapping to kernel

Kernel looks up system call number in syscall table,
calls appropriate function

Function executes and returns to interrupt handler,
which returns the result to the userspace process

Svstem call control flow

User-space Kernel-space

[User a;l)plication) (C-Library) (Kernel) (System call

getpid(void) Load jargurpents
. . - eax= NR_%etpid,
transition fo kerel (int 80)

system_call

call
system_call_table[eax] |

syscall_exit retumn

resume useyspace

3

Specifics have changed since this diagram was

- created, but the idea is still the same

Linux Syscall Specifics

The syscall handler is generally defined in
arch/x86/kernel/entry [32]64].S

In the Ubuntu kernel | am running,
entry 64.S contains ENTRY (system call),
which is where the syscall logic starts

There used to be “int” and “iret”
instructions, but those have been replaced by
“sysenter” and “sysexit”, which provide
similar functionality.

Project 1

Due: Oct 18th at 11:59 PM.

Three parts of varying difficulty:
* Write a simple shell in C

* Add a new system call and track state in kernel
structures to make it work

* Write a library through which the system call can be
invoked

Turn in code plus a write-up related to what
you learned/should have learned

The CSE451 shell

Print out prompt
Accept input
Parse input

If built-in command
* Do it directly

Else spawn new process

* Launch specified program
* Wait for it to finish

Repeat

CSE451Shell% /bin/date

Wed Apr 31 21:58:55 PDT 2013
CSE451Shell% pwd

Jreet

CSE451Shell% cd /
CSE451Shell% pwd

/
CSE451Shell%

CSEA451 shell hints

In your shell:

* Use fork to create a child process

* Use execvp to execute a specified program

* Use wait to wait until child process terminates

Useful library functions (see man pages):
* Strings: strcmp, strncpy, strtok, atoi

* |/O: fgets or (preferrably) readline

* Error reporting: perror

* Environment variables: getenv

CSEA451 shell hints

Advice from a previous TA:

* Try running a few commands in your completed
shell and then type exit. If it doesn’t exit the first
time, you’re doing something wrong

* echo $7? prints the last exit code, so you can check
your exit code against what is expected.

* Check the return values of all library/system calls.
They might not be working as you expect

* Each partner in your group should contribute some
work to each piece or you won’t end up
understanding the big picture

Adding a system call

Add execcounts system call to Linux:
* Purpose: collect statistics

* Count number of times a process and all of its
descendents call the fork, vfork, clone, and exec
system calls

Steps:
* Modify kernel to keep track of this information

* Add execcounts to return the counts to the user

* Use execcounts in your shell to get this data from
kernel and print it out

Programming in kernel mode

Your shell will operate in user mode

Your system call code will be in the Linux
kernel, which operates in kernel mode

Be careful - different programming rules,
conventions, etc.

Kernel programming

Can’t use application libraries (e.g. libc)
* No printf—use prink instead

Use only headers/functions exposed by the
kernel

You cannot trust user space

For example, you should validate user buffers
(look in kernel source for what other syscalls,
e.g. gettimeofday do)

Kernel development hints

Use find + grep as a starting point to find
interesting code

find . —type i =ncincu il dcGRciacion—n \

gettimeofday {} +

Pete Hornyack (a previous TA) put together a
tutorial on using ctags and cscope to cross-

reference type definitions:
http://www.cs.washington.edu/education/

courses/cse451/13sp/tutorials/
tutorial ctags.html

Kernel development hints

Use Git to collaborate with your project partners

* There is a guide to getting Git set up for use with project 1 on
the website:

http://www.cs.washington.edu/education/courses/cse451/13sp/
tutorials/tutorial git.html

% Qverview of use:

Create a shared repository in /projects/instr/13sp/cse451/X, where
X is your group’s letter

* Check the project’s kernel source into the repository

* Have each group member check out the kernel source, make
modifications to it as necessary, and check in their changes

* See the web page for more information

Git makes it easy to find any files you’ve changed.

Project 1 development

Use forkbomb for kernel compilation
* You have /cse451/netid directories with lots of space

Option 1: Use VMWare on a Windows lab machine
* ...or use the VM itself for kernel compilation (slow?)

* The VM files are not preserved once you log out of the
Windows machine, so copy/git push your work to attu,
your shared repository, or some other “safe” place

Option 2: Use Qemu on your box/lab linux machine

* See the Project 1 page (live now!)
http://www.cs.washington.edu/education/courses/
cse451/13au/projects/projectl.html

Option 1: VMWare Player

Once you have built the kernel, copy the resulting
bzlmage file to your VM and overwrite /boot/
vmlinuz-3.8.3-201.csed4blcustom

Reboot with sudo shutdown -r now

If your kernel fails to boot, pick a different kernel
from the menu to get back into the VM

While inside the running VM, use the dmesg
command to print out the kernel log (your printks
will show up here—use grep to find the ones you
care about)

Option 2: QEmu

Instructions are up on the course website
*k Much more convenient than Vmware
* It will run in a terminal window

* You can debug the kernel from your host
machine using GDB

* It’s a bit trickier to set up ... but good stuff to
know if you plan to get into backend dev

* Forkbomb is a Qemu virtual machine!

Adding a syscall: demo

Files to modify:

* include/linux/syscalls.h

* arch/x86/syscalls/syscall_64.tbl
* kernel/sys_ni.c

* Makefile

Write your syscall (kernel/my sys call.c)

Compile the kernel!

