The Kernel Abstraction (part 2)

Last Time

- Protection
 - prevent buggy or malicious user programs from corrupting the operating system or other apps
- Hardware support
 - Privileged instructions, not available at user-level
 - Exception trap to kernel if used at user-level
 - Memory protection
 - Virtual address -> physical address
 - If invalid virtual address, exception

Main Points

- Hardware support for dual-mode operation
 - Kernel-mode: execute with complete privileges
 - User-mode: execute with fewer privileges
- Safe control transfer
 - How do we switch from one mode to the other?
 - Preventing misuse of control transfer

Virtual Addresses

- Translation done in hardware, using a table
- Table set up by operating system kernel

9/28/12
Virtual Address Layout
- Plus shared code segments, dynamically linked libraries, memory mapped files, ...

Example: Corrected (What Does this Do?)
```c
int staticVar = 0;  // a static variable
main() {
    int localVar = 0;  // a procedure local variable
    staticVar += 1; localVar += 1;
    sleep(10);  // sleep causes the program to wait for x seconds
    printf(“static address: %x, value: %d
”, &staticVar, staticVar);
    printf(“procedure address: %x, value: %d”, &localVar, localVar);
}
```
Produces:
```
static address: 5328, value: 1
procedure address: ffffffff, value: 1
```

Hardware Timer
- Hardware device that periodically interrupts the processor
 - Returns control to the kernel timer interrupt handler
 - Interrupt frequency set by the kernel
 - Not by user code!
 - Interrupts can be temporarily deferred
 - Not by user code!
 - Crucial for implementing mutual exclusion
 - Pintos assignment 1: generalize hardware timer to a software timer

Question
- For a “Hello world” program, the kernel must copy the string from the user program memory into the screen memory. Why must the screen’s buffer memory be protected?
Question

- Suppose we had a perfect object-oriented language and compiler, so that only an object’s methods could access the internal data inside an object. If the operating system only ran programs written in that language, would it still need hardware memory address protection?

Mode Switch

- From user-mode to kernel
 - Interrupts
 - Triggered by timer and I/O devices
 - Exceptions
 - Triggered by unexpected program behavior
 - Or malicious behavior!
 - System calls (aka protected procedure call)
 - Request by program for kernel to do some operation on its behalf
 - Only limited # of very carefully coded entry points

Mode Switch

- From kernel-mode to user
 - New process/new thread start
 - Jump to first instruction in program/thread
 - Return from interrupt, exception, system call
 - Resume suspended execution
 - Process/thread context switch
 - Resume some other process
 - User-level upcall
 - Asynchronous notification to user program

How do we take interrupts safely?

- Interrupt vector
 - Limited number of entry points into kernel
- Kernel interrupt stack
 - Handler works regardless of state of user code
- Interrupt masking
 - Handler is non-blocking
- Atomic transfer of control
 - Single instruction to change:
 - Program counter
 - Stack pointer
 - Memory protection
 - Kernel/user mode
- Transparent restartable execution
 - User program does not know interrupt occurred
Interrupt Vector

- Table set up by OS kernel; pointers to code to run on different events

```
handleTimerInterrupt() {
    ...
}
handleDivideByZero() {
    ...
}
handleSystemCall() {
    ...
}
```

Interrupt Stack

- Per-processor, located in kernel (not user) memory
 - Usually a thread has both: kernel and user stack
- Why can’t interrupt handler run on the stack of the interrupted user process?

Interrupt Stack

- Per-processor, located in kernel (not user) memory
 - Usually a thread has both: kernel and user stack
- Why can’t interrupt handler run on the stack of the interrupted user process?

Interrupt Masking

- Interrupt handler runs with interrupts off
 - Reenabled when interrupt completes
- OS kernel can also turn interrupts off
 - Eg., when determining the next process/thread to run
 - If defer interrupts too long, can drop I/O events
 - On x86
 - CLI: disable interrupts
 - STI: enable interrupts
 - Only applies to the current CPU
- Cf. implementing synchronization, chapter 5
Interrupt Handlers

- Non-blocking, run to completion
 - Minimum necessary to allow device to take next interrupt
 - Any waiting must be limited duration
 - Wake up other threads to do any real work
 - Pintos: semaphore_up
- Rest of device driver runs as a kernel thread
 - Queues work for interrupt handler
 - (Sometimes) wait for interrupt to occur

Atomic Mode Transfer

- On interrupt (x86)
 - Save current stack pointer
 - Save current program counter
 - Save current processor status word (condition codes)
 - Switch to kernel stack; put SP, PC, PSW on stack
 - Switch to kernel mode
 - Vector through interrupt table
 - Interrupt handler saves registers it might clobber
System Calls

User Program

```
main() {
    syscall(arg1, arg2);
}
```

User Stub
```
syscall(arg1, arg2) {
    trap return
}
```

Kernel
```
syscall(arg1, arg2) {
    do operation
}
```

Kernel Stub
```
handler() {
    copy arguments from user memory
    check arguments
    syscall(arg1, arg2);
    copy return value into user memory
    return
}
```

Kernel System Call Handler

- Locate arguments
 - In registers or on user(!) stack
- Copy arguments
 - From user memory into kernel memory
 - Protect kernel from malicious code evading checks
- Validate arguments
 - Protect kernel from errors in user code
- Copy results back
 - Into user memory

At end of handler

- Handler restores saved registers
- Atomically return to interrupted process/thread
 - Restore program counter
 - Restore program stack
 - Restore processor status word/condition codes
 - Switch to user mode
Costs of Dual-Mode Operation

1. Network socket read
2. Copy arriving packet (DMA)
3. Kernel copy buffer
4. Parse request
5. File read
6. Disk request
7. Disk data (DMA)
8. Kernel copy buffer
9. Format reply
10. Network socket write
11. Kernel copy from user buffer into network buffer
12. Format outgoing packet and DMA

Booting

1. BIOS copies bootloader
2. Bootloader copies OS kernel
3. OS kernel copies login application

Virtual Machine

Guest/Host User Mode

Guest/Host Kernel Mode

Host Kernel Mode