CSE 451: Operating Systems
Spring 2009

Module 12
Secondary Storage

Steve Gribble
Secondary storage

• Secondary storage typically:
 – is anything that is outside of “primary memory”
 – does not permit direct execution of instructions or data retrieval via machine load/store instructions

• Characteristics:
 – it’s large: 50-1000GB (or more!)
 – it’s cheap: $0.10/GB for hard drives, $10/GB for SSD
 – it’s persistent: data survives power loss
 – it’s slow:
 • milliseconds to access for hard drives, microseconds for SSD
 • why is this considered slow?
 – it does fail, if rarely
 • Big failures (drive dies)
 • Little failures (read/write errors, one byte in 10^{13})
Another trip down memory lane …

IBM 2314
About the size of 6 refrigerators
8 x 29MB (M!)
Required similar sized air conditioning
(Hard) Disk trends

• Disk capacity, 1975-1989
 – doubled every 3+ years
 – 25% improvement each year
 – factor of 10 every decade
 – Still exponential, but far less rapid than processor performance

• Disk capacity 1990-2003
 – doubling every 12 months
 – 100% improvement each year
 – factor of 1000 every decade
 – Capacity growth 10x as fast as processor performance!

• Disk capacity 2003-2009
 – Slowed somewhat, doubling every 1.5 years
(Hard) Disk trends

• Only a decade ago, we purchased disks by the megabyte (and it hurt!)
• Today, 1 GB (a billion bytes) costs $1 from Dell (except you have to buy in increments of 40, 80, 250, 500 GB or 1TB)
 – => 1 TB costs $1K $500 $250 $100, 1 PB costs $1M $500K $250K, $100K
• Technology is amazing
 – Flying 747 six inches above the ground at 600mph
 – Reading/writing a strip of postage stamps
• But…
 – Jet bumps down
 – Bits are so close that cosmic rays/quantum effects change them
Memory hierarchy

- Each level acts as a cache of lower levels
Memory hierarchy: distance analogy

- CPU registers: 1 second, "My head"
- L1 cache: 12 seconds, "My desk"
- L2 cache: 1 minute, "This room"
- Primary Memory: 15 minutes, "This building"
- Secondary Storage: 4.75 years, "This city"
- Tertiary Storage: 500 years, "This planet"
Big Picture

• OS provides abstractions to allow physical HW resources to be shared / protected
 – CPU sharing with threads (virtual CPU)
 – Memory sharing with virtual memory
 – Disk sharing with files
Disks and the OS

• Disks are messy, messy devices
 – errors, bad blocks, etc.

• Job of OS is to hide this mess from higher-level software
 – low-level device drivers (initiate a disk read, etc.)
 – higher-level abstractions (files, databases, etc.)

• OS may provide different levels of disk access to different clients
 – physical disk block (head, cylinder, sector)
 – disk logical block (disk block #)
 – file logical (filename, block or record or byte #)
Physical hard disk structure

- Disk components
 - platters
 - surfaces
 - tracks
 - sectors
 - cylinders
 - arm
 - heads
Disk performance

• Performance depends on a number of steps
 – seek: moving the disk arm to the correct cylinder
 • depends on how fast disk arm can move
 – seek times aren’t diminishing very quickly (why?)
 – rotation (latency): waiting for the sector to rotate under head
 • depends on rotation rate of disk
 – rates are increasing, but slowly (why?)
 – transfer: transferring data from surface into disk controller, and from there sending it back to host
 • depends on density of bytes on disk
 – increasing, relatively quickly

• When the OS uses the disk, it tries to minimize the cost of all of these steps
 – particularly seeks and rotation
Performance via disk layout

- OS may increase file block size in order to reduce seeking
- OS may seek to co-locate “related” items in order to reduce seeking
 - blocks of the same file
 - data and metadata for a file
Performance via caching, pre-fetching

• Keep data or metadata in memory to reduce physical disk access
 – problem?
• If file access is sequential, fetch blocks into memory before requested
Performance via disk scheduling

• Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 – FCFS (do nothing)
 • reasonable when load is low
 • long waiting time for long request queues
 – SSTF (shortest seek time first)
 • minimize arm movement (seek time), maximize request rate
 • unfairly favors middle blocks
 – SCAN (elevator algorithm)
 • service requests in one direction until done, then reverse
 • skews wait times non-uniformly (why?)
 – C-SCAN
 • like scan, but only go in one direction (typewriter)
 • uniform wait times
Interacting with disks

- In the old days…
 - OS would have to specify cylinder #, sector #, surface #, transfer size
 - i.e., OS needs to know all of the disk parameters
- Modern disks are even more complicated
 - not all sectors are the same size, sectors are remapped, …
 - disk provides a higher-level interface, e.g., SCSI
 - exports data as a logical array of blocks [0 … N]
 - maps logical blocks to cylinder/surface/sector
 - OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 - on-board cache
 - as a result, physical parameters are hidden from OS
 - both good and bad
Seagate Barracuda 3.5” disk drive

- 1 Terabyte of storage (1000 GB)
- $100
- 4 platters, 8 disk heads
- 63 sectors (512 bytes) per track
- 16,383 cylinders (tracks)
- 164 Gbits / inch-squared (!)
- 7200 RPM
- 300 MB/second transfer
- 9 ms avg. seek, 4.5 ms avg. rotational latency
- 1 ms track-to-track seek
- 32 MB cache
Solid state drives: imminent disruption

• Hard drives are based on spinning magnetic platters
 – *mechanics* of drives drive performance characteristics
 • sector addressable, not byte addressable
 • capacity, sequential bandwidth improving exponentially
 • random access latency improving very slowly
 – cost dictated by massive economies of scale, and many decades of commercial development and optimization

• Solid state drives are based on NAND flash memory
 – no moving parts; performance characteristics driven by electronics and physics – more like RAM than spinning disk
 – relative technological newcomer, so costs are still quite high in comparison to hard drives, but dropping fast
SSD performance: reads

- Reads
 - unit of read is a page, typically 4KB large
 - today’s SSD can typically handle 10,000 – 100,000 reads/s
 - 0.01 – 0.1 ms read latency (50-1000x better than disk seeks)
 - 40-400 MB/s read throughput (1-3x better than disk seq. thpt)
SSD performance: writes

- **Writes**
 - flash media must be *erased* before it can be written to
 - unit of erase is a block, typically 64-256 pages long
 - usually takes 1-2ms to erase a block
 - blocks can only be erased a certain number of times before they become unusable – typically 100,000 – 1,000,000 times
 - unit of write is a page
 - writing a page can be 2-10x slower than reading a page

- **Writing to an SSD is complicated**
 - random write to existing block: read block, erase block, write back modified block
 - leads to hard-drive like performance (300 random writes / s)
 - sequential writes to erased blocks: fast!
 - SSD-read like performance (100-200 MB/s)
SSDs: dealing with erases, writes

- Lots of higher-level strategies to hiding the warts of an SSD
 - many of these work by virtualizing pages and blocks on the drive (i.e., exposing logical pages, not physical pages, to the rest of the computer)
 - wear-leveling: when writing, try to spread erases out evenly across physical blocks of the SSD.
 - Intel promises 100GB/day x 5 years for its SSD drives
 - log-structured filesystems: convert random writes within a filesystem to log appends on the SSD (more later)
 - build drives out of arrays of SSDs, add lots of cache
SSD cost

• Capacity
 – today, flash SSD costs $5-10 / GB
 • 64GB drive costs around $300-600
 – Data on cost trends is a little sketchy and preliminary
 – SSD vendors claim 2x drop in price per year
 • In 2014, $100 buys you a 200GB SSD or a 7TB hard drive

• Energy
 – SSD is typically more energy efficient than a hard drive
 • 1-2 watts to power a SSDs
 • ~10 watts to power a high performance hard drive
 – (can also buy a 1 watt low performance drive)
Intel X-25-E SSD

- 64GB for $800 (~$10/GB)
- Sustained sequential performance
 - Reads: 250 MB/s
 - Writes: 170 MB/s
- Sustained, random 4096-byte operations
 - Reads: 35K operations per second
 - Writes: 3.3K operations per second
- Latency
 - Read: 75 microseconds
 - Write: 85 microseconds (EXISTS write cache!)
- Lifetime
 - 2 petabytes of random writes